Skip to main content
Log in

Peculiarities in Creation of Genetic Engineering Constructions for Knock-In Variant of Genome Editing of Arabidopsis thaliana Cell Culture

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The peculiarities in the creation of genetic engineering tools for the knock-in variant of genome editing are considered in detail on the example of gfp gene delivery to two target regions (nucleolus organizer region and the region of one of histone H3 genes) of the Arabidopsis thaliana (L.) Heynh. genome using different methods of delivering exogenous DNA (agrobacterium-mediated transformation, bio-ballistics using different vectors and RNP complexes). Differences in the approaches to the creation of donor constructions and Cas9 tools depending on the selected method of delivery are considered. The selected target regions are of interest for further biotechnological studies on the creation of recombinant protein bioproducer lines since they refer to “housekeeping” gene regions and are characterized by a high transcriptional activity. It was established that the selected regions are not equivalent to each other as targets for incorporation of exogenous DNA. A complex compartmentalization of nucleolus, as well as a unique mechanism of “neutralization” of double-strand breaks, acts as barriers preventing the delivery of genetic engineering tools to this region. The second region of “housekeeping” genes (histone Н3.3 gene region) seems accessible and can be used for the knock-in variant of genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bortesi, L., Zhu, C., Zischewski, J., Perez, L., Bassié, L., Nadi, R., Forni, G., Lade, S.B., Soto, E., Jin, X., Medina, V., Villorbina, G., Muñoz, P., Farré, G., Fischer, R., Twyman, R.M., Capell, T., Christou, P., and Schillberg, S., Patterns of CRISPR/Cas9 activity in plants, animals and microbes, Plant Biotechnol. J., 2016, vol. 14, p. 2203.

    Article  CAS  Google Scholar 

  2. Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S.M.P., and Tuteja, N., The CRISPR/Cas genome-editing tool: application in improvement of crops, Front. Plant Sci., 2016, vol. 7, p. 1.

    Article  Google Scholar 

  3. Demirci, Y., Zhang, B., and Unver, T., CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing, J. Cell Physiol., 2018, vol. 233, p. 1844.

    Article  CAS  Google Scholar 

  4. Huang, T.K. and Puchta, H., CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination, Plant Cell Rep., 2019, vol. 38, p. 443.

    Article  CAS  Google Scholar 

  5. Rozov, S.M., Permyakova, N.V., and Deineko, E.V., The problem of the low rates of CRISPR/Cas9-mediated knock-ins in plants: approaches and solutions, Int. J. Mol. Sci., 2019, vol. 20, p. 3371.

    Article  CAS  Google Scholar 

  6. Collonnier, C., Guyon-Debast, A., Maclot, F., Mara, K., Florence, C., and Fabien, N., Towards mastering CRISPR-induced gene knock-in in plants: survey of key features and focus on the model Physcomitrella patens, Methods, 2017, vols. 121–122, p. 103.

  7. Hanania, U., Ariel, T., Tekoah, Y., Fux, L., Sheva, M., Gubbay, Y., Weiss, M., Oz, D., Azulay, Y., Turbovski, A., Forster, Y., and Shaaltiel, Y., Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins, Plant Biotechnol. J., 2017, vol. 15, p. 1120.

    Article  CAS  Google Scholar 

  8. Hussain, B., Lucas, S.J., and Budak, H., CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement, Brief. Funct. Genomics, 2018, vol. 17, p. 319.

    PubMed  CAS  Google Scholar 

  9. Qi, Y., Plant Genome Editing with CRISPR/Cas System, New Jersey: Humana Press, 2019.

    Book  Google Scholar 

  10. Mao, Y., Botella, R.J., Liu, Y., and Zhu, J.K., Gene editing in plants: progress and challenges, Natl. Sci. Rev., 2019, vol. 6, p. 421.

    Article  CAS  Google Scholar 

  11. Uniyal, A.P., Mansotra, K., Yadav, S.K., and Kumar, V., An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants, 3 Biotech., 2019, vol. 9, p. 1.

  12. Soyars, C.L., Peterson, B.A., Burr, C.A., and Nimchuk, Z.L., Cutting edge genetics: CRISPR/Cas9 editing of plant genomes, Plant Cell Physiol., 2018, vol. 59, p. 1608.

    Article  CAS  Google Scholar 

  13. Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C., and Cigan, A.M., Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA, Plant Physiol., 2015, vol. 169, p. 931.

    Article  CAS  Google Scholar 

  14. Sedov, K.A., Fomenkov, A.A., Solov’yova, A.I., Nosov, A.V., and Dolgikh, Yu.I., The level of genetic variability of cells in prolonged suspension culture of Arabidopsis thaliana,Biol. Bull., 2014, vol. 41, p. 493.

    Article  CAS  Google Scholar 

  15. Michno, J.-M., Wang, X., Liu, J., Curtin, S.J., Kono, T.J.Y., and Stupar, R.M., CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme, GM Crops Food, 2015, vol. 6, p. 243.

    Article  Google Scholar 

  16. Ogawa, Y., Dansako, T., Yano, K., Sakurai, N., Suzuki, H., Aoki, K., Noji, M., Saito, K., and Shibata, D., Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics, Plant Cell Physiol., 2008, vol. 49, p. 242.

    Article  CAS  Google Scholar 

  17. Schenk, R.U. and Hildebrandt, A.C., Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant sell cultures, Can. J. Bot., 1972, vol. 50, p. 199.

    Article  CAS  Google Scholar 

  18. Allen, G.C., Flores-Vergara, M.A., Krasynanski, S., Kumar, S., and Thompson, W.F., A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide, Nat. Protoc., 2006, vol. 1, p. 2320.

    Article  CAS  Google Scholar 

  19. Rozov, S.M. and Deineko, E.V., Strategies for optimizing recombinant protein synthesis in plant cells: classical approaches and new directions, Mol. Biol. (Mosk.), 2019, vol. 53, p. 179.

    Article  CAS  Google Scholar 

  20. Okada, T., Endo, M., Singh, M.B., and Bhalla, P.L., Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3,Plant J., 2005, vol. 44, p. 557.

    Article  CAS  Google Scholar 

  21. Hahn, F., Eisenhut, M., Mantegazza, O., and Weber, A.P.M., Homology-directed repair of a defective glabrous gene in Arabidopsis with Cas9-based gene targeting, Front. Plant Sci., 2018, vol. 9, p. 424.

    Article  Google Scholar 

  22. Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J., and Gao, C., Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9, Nat. Plants, 2016, vol. 2, p. 16139.

    Article  CAS  Google Scholar 

  23. Kalinina, N.O., Makarova, S., Makhotenko, A., Love, A.J., and Taliansky, M., The multiple functions of the nucleolus in plant development, disease and stress responses, Front. Plant Sci., 2018, vol. 9, p. 132.

    Article  Google Scholar 

  24. Stępiński, D., Functional ultrastructure of the plant nucleolus, Protoplasma, 2014, vol. 251, p. 1285.

  25. Trinkle-Mulcahy, L., Nucleolus: The Consummate Nucle-ar Body, Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-803480-4.00011-9

    Book  Google Scholar 

  26. Shaw, P.J., Nucleolus, in: Encyclopedia of Life Sciences (ELS), Chichester: John Wiley & Sons Ltd: 2010. https://doi.org/10.1002/9780470015902.a0001352.pub3

  27. Pontvianne, F., Carpentier, M.-C., Durut, N., Pavlištová, V., Jaške, K., Schořová, Š., Parrinello, H., Rohmer, M., Pikaard, C.S., Fojtová, M., Fajkus, J., and Sáez-Vásquez, J., Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome, Cell Rep., 2016, vol. 16, p. 1574.

    Article  CAS  Google Scholar 

  28. Tsekrekou, M., Stratigi, K., and Chatzinikolaou, G., The nucleolus: in genome maintenance and repair, Int. J. Mol. Sci., 2017, vol. 18, p. 1411. https://doi.org/10.3390/ijms18071411

    Article  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 17-14-01099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Deineko.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belavin, P.A., Permyakova, N.V., Zagorskaya, A.A. et al. Peculiarities in Creation of Genetic Engineering Constructions for Knock-In Variant of Genome Editing of Arabidopsis thaliana Cell Culture. Russ J Plant Physiol 67, 855–866 (2020). https://doi.org/10.1134/S1021443720040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720040032

Keywords:

Navigation