Skip to main content
Log in

Role of Fatty Acid ω3 Acyl-Lipid Desaturases in Low-Temperature Hardening of Solanum tuberosum L.

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The role of fatty acid ω3 acyl-lipid desaturases in low-temperature hardening (7 days at 3°C) of potato plants (Solanum tuberosum L., cv. Yubilei Zhukova) was studied. It was found that transcriptions of the three genes of ω3 acyl-lipid desaturases present in the potato genome significantly differed in their response to low temperature. The content of the FAD3 gene transcripts dramatically fell in the first day of cooling and was not restored until the end of the hardening period. The FAD7 gene was constitutively expressed through almost the entire adaptation period. The level of the FAD8 gene transcripts sharply increased in the first day of the hardening. The total fraction of trienoic fatty acids, which are synthesized by ω3 acyl-lipid desaturases, rose by 3% during the hardening, which is a relatively large value for potato. The hardened plants, in comparison with the unhardened ones, manifested a higher net photosynthesis/dark respiration ratio, higher (2.5-fold) concentration of soluble sugars, and stronger resistance to negative (–2 or –3°C) temperatures. It is suggested that the augmentation of the trienoic FA fraction, which are mainly localized in the thylakoid membranes of the potato chloroplasts, sustains the photosynthesis under low temperatures. Therefore, the maintenance of photosynthetic activity during the low-temperature acclimation supplies the plant with photoassimilates that are the principal sources of energy and metabolites necessary for the establishment of potato plant resistance to hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Xin, Z. and Browse, J., Cold comfort farm: the acclimation of plants to freezing temperatures, Plant Cell Environ., 2000, vol. 23, p. 893.

    Article  Google Scholar 

  2. Jan, N., Mahboob ul-Hussain, and Andrab, Kh.I., Cold resistance in plants: a mystery unresolved, Electr-on. J. Biotechnol., 2009, vol. 12, p. 14.

    Article  Google Scholar 

  3. Titov, A.F., Akimova, T.V., Talanova, V.V., and Topchieva, L.V., Ustoichivost’ rastenii v nachal’nyi period deistviya neblagopriyatnykh temperatur (Stability of Plants in the Initial Period of Action of Unfavorable Temperatures), Moscow: Nauka, 2006.

  4. Lyons, J.M., Chilling injury in plants, Annu. Rev. Plant Physiol., 1973, vol. 24, p. 445.

    Article  CAS  Google Scholar 

  5. Los', D.A., Molecular mechanisms of cold tolerance in plants, Vestn. Ross. Akad. Nauk, 2005, vol. 75, p. 338.

    Google Scholar 

  6. Moller, I.M., Jensen, P.E., and Hansson, A., Oxidative modifications to cellular components in plants, Annu. Rev. Plant Biol., 2007, vol. 58, p. 459.

    Article  CAS  Google Scholar 

  7. Harwood, J.L., Plant acyl lipids: structure, distribution, and analysis, in The Biochemistry of Plants: A Comprehensive Treatise, Vol. 4: Lipids: Structure and Function, Stumpf, P.K., Ed., New York: Academic, 1980, p. 1.

  8. Los, D.A., Desaturazy zhirnykh kislot (Fatty Acid Desaturases), Moscow: Nauch. Mir, 2014.

  9. Los, D.A. and Murata, N., Structure and expression of fatty acid desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, p. 3.

    Article  CAS  Google Scholar 

  10. Rao, X., Huang, X., Zhou, Z., and Lin, X., An improvement of the 2’ΔΔCT method for quantitative real-time polymerase chain reaction data analysis, Biostat. Bioinforma. Biomath., 2013, vol. 3, p. 71.

    PubMed  PubMed Central  Google Scholar 

  11. Maali Amiri, R., Goldenkova-Pavlova, I.V., Yur’eva, N.O., Pchelkin, V.P., Tsydendambaev, V.D., Vereshchagin, A.G., Deryabin, A.N., Trunova, T.I., Los’, D.A., and Nosov, A.M., Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium, Russ. J. Plant Physiol., 2007, vol. 54, p. 600.

    Article  CAS  Google Scholar 

  12. Sidorov, R.A., Zhukov, A.V., Vereshchagin, A.G., and Tsydendambaev, V.D., Occurrence of fatty acid lower-alkyl esters in euonymus fruits, Russ. J. Plant Physiol., 2012, vol. 59, p. 326.

    Article  CAS  Google Scholar 

  13. Lyons, J.M., Weaton, T.A., and Pratt, H.K., Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants, Plant Physiol., 1964, vol. 39, p. 262.

    Article  CAS  Google Scholar 

  14. Klimov, S.V., Cold hardening of plants is a result of maintaining an increased photosynthesis/respiration ratio at low temperatures, Biol. Bull. RAN, 2003, vol. 30, p. 48.

    Article  Google Scholar 

  15. Turkina, M.V. and Sokolova, S.V., Methods for determining monosaccharides and oligosaccharides, in Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinova, O.A., Ed., Moscow: Nauka, 1971, p. 7.

  16. Campos, P.S., Quartin, V., Ramalho, J.C., and Nunes, M.A., Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants, J. Plant Physiol., 2003, vol. 160, p. 283.

    Article  CAS  Google Scholar 

  17. Los, D.A., Ray, M.K., and Murata, N., Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803, Mol. Microbiol., 1997, vol. 25, p. 1167.

    Article  CAS  Google Scholar 

  18. Mironov, K.S., Sidorov, R.A., Kreslavski, V.D., Bedbenov, V.S., Tsydendambaev, V.D., and Los, D.A., Cold-induced gene expression and ω3 fatty acid unsaturation is controlled by red light in Synechocystis,J. Photochem. Photobiol., 2014, vol. 137, p. 84.

    Article  CAS  Google Scholar 

  19. Iba, K., Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance, Annu. Rev. Plant Biol., 2002, vol. 53, p. 225. https://doi.org/10.1146/annurev.arplant.53.100201.160729

    Article  PubMed  CAS  Google Scholar 

  20. Chen, M. and Thelen, J.J., ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Ar-abidopsis,Plant Cell, 2013, vol. 25, p. 1430.

    Article  CAS  Google Scholar 

  21. Teixeira, M.C., Carvalho, I.S., and Brodelius, M., Omega-3 fatty acid desaturase genes isolated from purslane (Portulaca oleracea L.): expression in different tissues and response to cold and wound stress, J. Agric. Food Chem., 2010, vol. 58, p. 1870.

    Article  CAS  Google Scholar 

  22. Matteucci, M., D’Angeli, S., Errico, S., Lamanna, R., Perrotta, G., and Altamura, M.M., Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness, J. Exp. Bot., 2011, vol. 62, p. 3403.

    Article  CAS  Google Scholar 

  23. Wada, H. and Murata, N., Temperature-induced changes in the fatty acid composition of the cyanobacterium Synechocystis PCC 6803, Plant Physiol., 1990, vol. 92, p. 1062.

    Article  CAS  Google Scholar 

  24. Lee, S.H., Ahn, S.J., Im, Y.J., Cho, K., Chung, C.C., Cho, B.H., and Han, O., Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots, Biochem. Biophys. Res. Commun., 2005, vol. 330, p. 1194.

    Article  CAS  Google Scholar 

  25. Vereshchagin, A.G., Lipidy v zhizni rastenii (Lipids in Plant Life), Moscow: Nauka, 2007.

  26. Vijayan, P. and Browse, J., Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation, Plant Physiol., 2002, vol. 129, p. 876. https://doi.org/10.1104/pp.004341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Klimov, S.V., An increased ratio of photosynthesis to respiration at low temperatures is a prerequisite for winter wheat cold acclimation, Russ. J. Plant Physiol., 1998, vol. 45, p. 359.

    CAS  Google Scholar 

  28. Zuther, E., Schulz, E., Childs, L.H., and Hincha, D.K., Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions, Plant Cell Environ., 2012, vol. 35, p. 1860. https://doi.org/10.1111/j.1365-3040.2012.02522.x

    Article  PubMed  CAS  Google Scholar 

  29. Arondel, V. and Kader, J.C., Lipid transfer in plants, Experientia, 1990, vol. 46, p. 579.

    Article  CAS  Google Scholar 

  30. Bukhov, N.G., Dynamic light regulation of photosynthesis (A review), Russ. J. Plant Physiol., 2004, vol. 51, p. 742.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Education and Science of the Russian Federation as part of a state task (project no. AAAA-A19-119080690056-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Popov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any work conducted on animal or human participants.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Aver’yanov

Abbreviations: ACP—acyl carrier protein; UI—unsaturation index.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.N., Naraikina, N.V. & Pchelkin, V.P. Role of Fatty Acid ω3 Acyl-Lipid Desaturases in Low-Temperature Hardening of Solanum tuberosum L. . Russ J Plant Physiol 67, 906–911 (2020). https://doi.org/10.1134/S1021443720040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720040123

Keywords:

Navigation