Skip to main content
Log in

Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite \(A_{2}XY_{6}\) compounds

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Metal halide perovskites have attracted great attention in the past decade due to unique and tunable optical and electrical properties, which are promising candidates for various applications such as solar cells, light-emitting diodes, and laser cooling devices. For cubic perovskites, the lattice constant, a, representing the size of the unit cell, has a significant impact on the structural stability, bandgap structure, and thus materials performance. In this study, we develop the Gaussian process regression (GPR) model to shed light on the relationship among ionic radii, electronegativities, and lattice constants for cubic perovskite \(A_{2}XY_{6}\) compounds. A total of 79 samples with lattice constants ranging from 8.109 to 11.790 \(\mathring{\rm A}\) are examined. The model has a high degree of accuracy and stability, contributing to fast, robust, and low-cost estimations of lattice constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abriel W, White MA (1990) The phase transitions of ferroelastic K\(_{2}\)SeBr\(_{6}\): A calorimetric and x-ray diffraction study. J Chem Phys 93:8321–8327

    Google Scholar 

  • Abriel W, Zehnder EJ (1987) Vibronic coupling and dynamically distorted structures in hexahalogenotellurates (IV)-low-temperature X-ray-diffraction (300–160-K) and ftir-spectroscopic (300-5-K) results. Zeitschrift Fur Naturforschung Sect BA J Chem Sci 10:1273–1281

    Google Scholar 

  • Alade IO, Olumegbon IA, Bagudu A (2020) Lattice constant prediction of A\(_{2}\)XY\(_{6}\) cubic crystals (A= K, Cs, Rb, TI; X= tetravalent cation; Y= F, Cl, Br, I) using computational intelligence approach. J Appl Phys 127(1):015303

    Google Scholar 

  • Averdunk F, Hoppe R (1990) Zur kenntnis von kubischem Rb\(_{2}\) [GeF\(_{6}\)](mit einer bemerkung über A\(_{3}\)GeF\(_{7}\) MIT A= Rb, Tl SOWIE Tl\(_{2}\)GeF\(_{6}\))[1]. J Fluorine Chem 47:481–488

    Google Scholar 

  • Bagnall KW, D’Eye RWM, Freeman JH (1955) The polonium halides. Part II. Bromides. J Chem Soc (Resumed) 1955:3959–3963

    Google Scholar 

  • Bagnall KW, D’Eye RWM, Freeman JH (1956) The polonium halides. Part III. Polonium tetraiodide. J Chem Soc (Resumed) 657:3385–3389

    Google Scholar 

  • Balachandran PV, Emery AA, Gubernatis JE, Lookman T, Wolverton C, Zunger A (2018) Predictions of new ABO\(_{3}\) perovskite compounds by combining machine learning and density functional theory. Phys Rev Mater 2(4):043802

    Google Scholar 

  • Beck J, Hengstmann M (1998) Über Thallium (I)-chlorooxomolybdate: synthese und Kristallstrukturen von Tl [MoOCl\(_{4}\) (NCCH\(_{3}\))], Tl [Mo\(_{2}\)O\(_{2}\)Cl\(_{7}\)] und Tl\(_{2}\) [Mo\(_{4}\)O\(_{4}\)Cl\(_{14}\)] und die Struktur von Tl\(_{2}\) [MoCl\(_{6}\)]. Zeitschrift für Anorganische Allgemeine Chem 624:1943–1950

    Google Scholar 

  • Bin H, Zhou JQ (2005) Bezafibrate stimulate endothelial cell growth and miration. Henan Med Res 4:3

    Google Scholar 

  • Bland JA, Flengas SN (1961) The Crystal Structure of K\(_{2}\)TiCl\(_{6}\). Can J Phys 39:941–944

    Google Scholar 

  • Bode H, Voss E (1956) Über Strukturen von Fluorokomplexen mit vierwertigem Nickel und Chrom. Zeitschrift für Anorganische Allgemeine Chem 286:136–141

    Google Scholar 

  • Bork M, Hoppe R (1996) Der erste Vertreter des K\(_{2}\)PtCl\(_{6}\)-Typs bei Fluoriden A\(_{2}\) [PtF\(_{6}\)]: \(\beta \)-Cs\(_{2}\) [PtF\(_{6}\)]. Zeitschrift für Anorganische Allgemeine Chem 622:417–424

    Google Scholar 

  • Boysen H, Hewat AW (1978) A neutron powder investigation of the structural changes in K\(_{2}\)SnCl\(_{6}\). Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 34:1412–1418

    Google Scholar 

  • Brik MG, Kityk IV (2011) Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A\(_{2}\)XY\(_{6}\) cubic crystals (A= K, Cs, Rb, Tl; X= tetravalent cation, Y= F, Cl, Br, I). J Phys Chem Solids 72(11):1256–1260

    Google Scholar 

  • Brill TB, Gearhart RC, Welsh WA (1974) “Crystal structures of M\(_{2}\)SnCl\(_{6}\) salts. An analysis of the “crystal field effect” in their nuclear quadrupole resonance and vibrational spectra,”. J Magnet Reson (1969) 13:27–37

    Google Scholar 

  • Bull AD (2011) Convergence rates of efficient global optimization algorithms. J Mach Learn Res 12:2879–2904

    Google Scholar 

  • Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Google Scholar 

  • Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6(1):13–20

    Google Scholar 

  • Coll RK, Fergusson SE, Penfold BR, Rankin DA, Robinson WT (1990) The preparative and structural chemistries of hexahalogeno and trichlorostannato complexes of iridium. Inorg Chim Acta 177:107–114

    Google Scholar 

  • Deloume JP, Faure R, Thomas-David G (1979) Nouvelle détermination de la structure cristalline du \(\mu \)-oxo-bis [pentachlororuthénate (IV)] de potassium, K\(_{4}\) [Ru\(_{2}\)Cl\(_{10}\)O] et affinement de la structure de l’hexachlororuthénate de potassium K\(_{2}\) [RuCl\(_{6}\)]. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 35:558–561

    Google Scholar 

  • Edwards AJ, Peacock RD, Said A (1962) “894. Complex chlorides and bromides of quadrivalent molybdenum. J Chem Soc (Resumed) 1962:4643–4648

    Google Scholar 

  • Elder M, Fergusson JE, Gainsford GJ, Hickford JH, Penfold BR (1967) Potassium pentachlorohydroxytechnetate (IV). J Chem Soc A Inorganic Phys Theor 1967:1423–1425

    Google Scholar 

  • Engel G (1935) Kristallogeo. Kristallphys Kristallchem Z Kristallogr 90:341

    Google Scholar 

  • Ferrari A, Coghi L (1941) Gazzetta. Chim Italiana 71:440

    Google Scholar 

  • Grundy HD, Brown ID (1970) A refinement of the crystal structures of K\(_{2}\)ReCl\(_{6}\), K\(_{2}\)ReBr\(_{6}\), and K\(_{2}\)PtBr\(_{6}\). Can J Chem 48:1151–1154

    Google Scholar 

  • Guenther KF (1964) The preparation of some alkali hexabromotitanates (IV). Inorg Chem 3(12):1788–1789

    Google Scholar 

  • Guo W, Kirste R, Bryan Z, Bryan I, Gerhold M, Collazo R, Sitar Z (2015) Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes. J Appl Phys 117(11):113107

    Google Scholar 

  • Ha ST, Shen C, Zhang J, Xiong Q (2016) Laser cooling of organic-inorganic lead halide perovskites. Nat Photonics 10(2):115

    Google Scholar 

  • Ha ST, Su R, Xing J, Zhang Q, Xiong Q (2017) Metal halide perovskite nanomaterials: synthesis and applications. Chem Sci 8(4):2522–2536

    Google Scholar 

  • Hester JR, Maslen EN, Spadaccini N, Ishizawa N, Satow Y (1993) Accurate synchrotron radiation \(\Delta \rho \) maps for K\(_{2}\)SiF\(_{6}\) and K\(_{2}\)PdCl\(_{6}\). Acta Crystallogr B 49:967–973

    Google Scholar 

  • Hoppe R, Hofmann B (1977) Neues über K\(_{2}\) [MnF\(_{6}\)], Rb\(_{2}\) [MnF\(_{6}\)] und Cs\(_{2}\) [MnF\(_{6}\)]. Zeitschrift für Anorganische Allgemeine Chem 436:65–74

    Google Scholar 

  • Hoppe R, Klemm W (1952) Über Fluorokomplexe des Palladiums und des Goldes. Zeitschrift für Anorganische Allgemeine Chem 268:364–371

    Google Scholar 

  • Ishikawa H, Takayama T, Kremer RK, Nuss J, Dinnebier R, Kitagawa K, Ishii K, Takagi H (2019) Ordering of hidden multipoles in spin-orbit entangled \(5d^{1}\) Ta chlorides. Phys Rev B 100(4):045142

    Google Scholar 

  • Jiang J, Bradford G, Hossain SI, Brown MD, Cooper J, Miller E, Huang Y, Miao H, Parrell JA, White M, Hunt A, Sengupta S, Revur R, Shen T, Kametani F, Trociewitz UP, Hellstrom EE, Larbalestier DC (2019) High-performance Bi-2212 round wires made with recent powders. IEEE Trans Appl Superconduct 29(5):1–5

    Google Scholar 

  • Jin H, Rhim SH, Im J, Freeman AJ (2013) Topological oxide insulator in cubic perovskite structure. Sci Rep 3(1):1–5

    Google Scholar 

  • Jongen L, Meyer G (2004) Dipotassium hexachlorotantalate (IV), K\(_{2}\)TaCl\(_{6}\). Acta Crystallogr Sect E Struct Rep Online 60:i91–i92

    Google Scholar 

  • Ju MG, Chen M, Zhou Y, Garces HF, Dai J, Ma L, Padture NP, Zeng XC (2018) Earth-abundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett 3(2):297–304

    Google Scholar 

  • Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed 53(11):2812–2824

    Google Scholar 

  • Ketelaa JAA, Van Walsem JF (1938) Die Krystallstruktur des Ammonium-, Kalium-, Rubidium- und Caesiumpalladiumhexachlorids und -bromids. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique 57:964–966

    Google Scholar 

  • Ketelaar JAA (1935) Die Kristallstruktur von K-, Rb-, Cs-und Tl-Silicofluorid und von LiMnO\(_{4}\)-\(_{3}\)H\(_{2}\)O. Zeitschrift für Kristallogr Crystall Mater 92:155–156

    Google Scholar 

  • Ketelaar JAA, Rietdijk AA, van Staveren CH (1937) Die Kristallstruktur von Ammonium-, Kalium-, Rubidium-und Cäsiumstannibromid. Recl Trav Chim Pays-Bas 56:907–908

    Google Scholar 

  • Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Google Scholar 

  • Lalancette RA, Elliott N, Bernal I (1972) Crystal structures and magnetic properties of A\(_{2}\)MnCl\(_{6}\) salts (A= NH 4+, K+ and Rb+). J Cryst Mol Struct 2:143–149

    Google Scholar 

  • Laubengayer AW, Billings OB, Newkirk AE (1940) Chlorogermanic acid and the chlorogermanates. Properties and crystal structure of cesium hexachlorogermanate. J Am Chem Soc 62:546–548

    Google Scholar 

  • Leguy AM, Hu Y, Campoy-Quiles M, Alonso MI, Weber OJ, Azarhoosh P, Van Schilfgaarde M, Weller MT, Bein T, Nelson J, Docampo P (2015) Reversible hydration of CH\(_{3}\)NH\(_{3}\)PbI\(_{3}\) in films, single crystals, and solar cells. Chem Mater 27(9):3397–3407

    Google Scholar 

  • Li M, Wang Z, Wang Y, Li J, Viehland D (2013) Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl Phys Lett 102(8):082404

    Google Scholar 

  • Li M, Dong C, Zhou H, Wang Z, Wang X, Liang X, Lin Y, Sun NX (2017) Highly sensitive DC magnetic field sensor based on nonlinear ME effect. IEEE Sensors Lett 1(6):1–4

    Google Scholar 

  • Lin L, Gu C, Zhu J, Ye Q, Jiang E, Wang W, Liao M, Yang Z, Zeng Y, Sheng J, Guo W (2019) Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode. J Mater Sci 54(10):7789–7797

    Google Scholar 

  • Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr B 57(6):725–738

    Google Scholar 

  • Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593–1596

    Google Scholar 

  • Magette M, Fuger J (1977) Preparation, crystal structure and enthalpy of formation of dicaesium hexabromoneptunate. Inorganic Nucl Chem Lett 13:529–536

    Google Scholar 

  • Manojlovic LM (1956) The crystal structure of cesium hexaiodotellurite. Bull Inst Nuclear Sci Boris Kidrich (Belgrade) 6:149

    Google Scholar 

  • McCullough JD (1936) Kristallgeometrie Kristallphys Kristallchem. Z Kristallogr 94:143

    Google Scholar 

  • Moews PC (1966) The crystal structure, visible, and ultraviolet spectra of potassium hexachloromanganate (IV). Inorg Chem 5:5–8

    Google Scholar 

  • National renewable energy laboratory. https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.20190327.pdf

  • Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca, pp 3175–3187

    Google Scholar 

  • Peresh EY, Sidei VI, Zubaka OV, Stercho IP (2011) K\(_{2}\) (Rb\(_{2}\), Cs\(_{2}\), Tl\(_{2}\)) TeBr\(_{6}\) (I\(_{6}\)) and Rb\(_{3}\) (Cs\(_{3}\)) Sb\(_{2}\) (Bi\(_{2}\)) Br\(_{9}\) (I\(_{9}\)) perovskite compounds. Inorg Mater 47:208–212

    Google Scholar 

  • Qiu D, Wu W, Pan Y, Xu S, Zhang ZM, Li ZL, Li ZY, Wang Y, Wang L, Zhao Y, Zhang ZW (2017) Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors. IEEE Trans Appl Supercond 27(4):1–5

    Google Scholar 

  • Sakai N, Haghighirad AA, Filip MR, Nayak PK, Nayak S, Ramadan A, Wang Z, Giustino F, Snaith HJ (2017) Solution-processed cesium hexabromopalladate (IV), Cs\(_{2}\)PdBr\(_{6}\), for optoelectronic applications. J Am Chem Soc 139(17):6030–6033

    Google Scholar 

  • Schüpp B, Heines P, Keller HL (2000) Zwei neue Iodopalladate mit gleicher Summenformel: Rb\(_{2}\)PdI\(_{4} \cdot \) I\(_{2}\)-ein neuer Strukturtyp mit eingelagerten I\(_{2}\)-Molekülen-und Rb\(_{2}\)PdI\(_{6}\). Zeitschrift für Anorganische Allgemeine Chem 626:202–207

    Google Scholar 

  • Schüpp B, Heines P, Savin A, Keller HL (2000) Crystal structures and pressure-induced redox reaction of Cs\(_{2}\)PdI\(_{4} \cdot \)I\(_{2}\) to Cs\(_{2}\)PdI\(_{6}\). Inorg Chem 39:732–735

    Google Scholar 

  • Schütz W (1936) Die kristallchemische Verwandtschaft zwischen Germanium und Silicium. Zeitschrift für Physikalische Chem 31:292–308

    Google Scholar 

  • Schwartz J, Koch CC, Zhang Y, Liu X (2017) Formation of bismuth strontium calcium copper oxide superconductors. US Patent US9773962B2. https://patentimages.storage.googleapis.com/dd/a0/5d/f73e3aa9c2eae4/US9773962.pdf

  • Shen T, Bosque E, Davis D, Jiang J, White M, Zhang K, Higley H, Turqueti M, Huang Y, Miao H, Trociewitz U (2019) Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm\(^{2}\). Sci Rep 9(1):1–9

    Google Scholar 

  • Sidey V (2019) A simplified empirical model for predicting the lattice parameters for the cubic perovskite-related inorganic A\(_{2}\)BX\(_{6}\) halides. J Phys Chem Solids 126:310–313

    Google Scholar 

  • Sinram D, Brendel C, Krebs B (1982) Hexa-iodoanions of titanium, zirconium, hafnium, palladium and platinum: preparation, properties and crystal structures of the caesium salts. Inorg Chim Acta 64:L131–L132

    Google Scholar 

  • Song H, Hunte F, Schwartz J (2012) On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa\(_{2}\)Cu\(_{3}\)O\(_{7-x}\) coated conductors by quenching. Acta Mater 60(20):6991–7000

    Google Scholar 

  • Sperka G, Maunter FA (1988) Crystal growth and structure of Cs\(_{2}\)ReCl\(_{6}\). Cryst Res Technol 23:K109–K111

    Google Scholar 

  • Steirer KX, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry JJ (2016) Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett 1(2):360–366

    Google Scholar 

  • Stoll P (1926) Diss. ETH Zürich, pp 1–46

  • Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344

    Google Scholar 

  • Takazawa H, Ohba S, Saito Y (1988) Electron-density distribution in crystals of dipotassium tetrachloropalladate (II) and dipotassium hexachloropalladate (IV), K\(_{2}\) [PdCl\(_{4}\)] and K\(_{2}\) [PdCl\(_{6}\)] at 120 K. Acta Crystallogr B 44:580–585

    Google Scholar 

  • Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9(9):687–692

    Google Scholar 

  • Taylor JC (1987) A comparison of profile decomposition and Rietveld methods for structural refinement with powder diffraction data. Zeitschrift für Kristallogr Crystall Mater 181:151–160

    Google Scholar 

  • Thiele G, Mrozek C, Kämmerer D, Wittmann K (1983) Über hexaiodoplatinate (IV) M\(_{2}\)PtI\(_{6}\) (M= K, Rb, Cs, NH\(_{4}\), Tl) darstellungsverfahren, eigenschaften und kristallstrukturen/on hexaiodoplatinates (IV) M\(_{2}\)PtI\(_{6}\) (M= K, Rb, Cs, NH\(_{4}\), Tl)-preparation, properties and structural data. Zeitschrift für Naturforschung B 38:905–910

    Google Scholar 

  • Thiele G, Chr M, Kammerer D, Wittmann K (1983) On hexaiodoplatinates (IV) M\(_{2}\)PtI\(_{6}\) (M= K, Rb, Cs, NH\(_{4}\), Tl)-preparation, properties and structural data. Zeitschrift Fur Naturforschung Sect BA J Chem Sci 38:905–910

    Google Scholar 

  • Thieme CLH, Gagnon KJ, Coulter JY, Song H, Schwartz J (2009) Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications. IEEE Trans Appl Superconduct 19(3):1626–1632

    Google Scholar 

  • Vdovenko VM, Kozhina II, Suglobova IG, Chirkst DEH (1973) Complexing in uranium halogenide-alkali metal halogenide systems. Radiokhimiya 15:54–57

    Google Scholar 

  • Wang P, Xu W, Zheng YQ (2002) Crystal structure of dirubidium hexachlorotungstate (IV), Rb\(_{2}\) [WCl\(_{6}\)]. Zeitschrift für Kristallogr New Cryst Struct 217:301

    Google Scholar 

  • Wang P, Xu W, Zheng YQ (2003) Crystal structure of dicaesium hexachlorotungstate (IV), Cs\(_{2}\) [WCl\(_{6}\)]. Zeitschrift für Kristallogr New Cryst Struct 218:25

    Google Scholar 

  • Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA+ U framework. Phys Rev B 73(19):195107

    Google Scholar 

  • Wang Y, Hasanyan D, Li M, Gao J, Viswan R, Li J, Viehland D (2012) Magnetic field dependence of the effective permittivity in multiferroic composites. Phys Status Solidi (a) 209(10):2059–2062

    Google Scholar 

  • Wang Y, Hasanyan D, Li M, Gao J, Li J, Viehland D (2013) Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: Model and experiment. IEEE Trans Ultrason Ferroelectr Freq Control 60(6):1227–1233

    Google Scholar 

  • Wang Y, Zheng J, Zhu Z, Zhang M, Yuan W (2019) Quench behavior of high-temperature superconductor (RE) Ba2Cu3O \(\times \) CORC cable. J Phys D Appl Phys 52(34):345303

    Google Scholar 

  • Webster M, Collins PH (1973) Structural and thermochemical studies on Rb\(_{2}\)TeCl\(_{6}\) and comparison with Rb\(_{2}\)SnCl\(_{6}\). J Chem Soc Dalton Trans 6:588–594

    Google Scholar 

  • Werker W (1939) Die Krystallstruktur des Rb\(_{2}\)SnJ\(_{6}\) und Cs\(_{2}\)SnJ\(_{6}\). Recl Trav Chim Pays-Bas 58:257–258

    Google Scholar 

  • Williams RJ, Dillin DR, Milligan WO (1973) Structure refinement of potassium chloroplatinate by powder and single-crystal methods. Acta Crystallogr Sect B Struct Crystall Cryst Chem 29:1369–1372

    Google Scholar 

  • Wyckoff RW, Mueller JH (1927) The crystal structure of cesium fluogermanate. Am J Sci 76:347–352

    Google Scholar 

  • Xie L, Zhong H, Du Z, Zhou J (2020) Monte Carlo simulation of electromagnetic wave transmittance in charged sand/dust storms. J Quant Spectrosc Radiat Transfer 241:106744

    Google Scholar 

  • Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC (2014) Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13(5):476

    Google Scholar 

  • Xu W, Zheng YQ (2005) Crystal structure of dipotassium hexachlorotungstate (IV), K\(_{2}\) [WCl\(_{6}\)]. Zeitschrift für Kristallogr New Cryst Struct 220:323–323

    Google Scholar 

  • Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker AJ, Tyukalova E, Hu Z, Kawecki M (2019) Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics 13(6):418–424

    Google Scholar 

  • Yang Z, Liu Z, Sheng J, Guo W, Zeng Y, Gao P, Ye J (2017) Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells. Sci Rep 7(1):1–9

    Google Scholar 

  • Yang P, Li K, Wang Y, Wang L, Wu Q, Huang A, Hong Z, Jiang G, Jin Z (2019) Quench Protection System of a 1 MW High Temperature Superconductor DC Induction Heater. IEEE Trans Appl Supercond 29(5):1–6

    Google Scholar 

  • Yin WJ, Shi T, Yan Y (2014) Unusual defect physics in CH\(_{3}\)NH\(_{3}\)PbI\(_{3}\) perovskite solar cell absorber. Appl Phys Lett 104(6):063903

    Google Scholar 

  • Yun H, Jang GJ (2007) Dicaesium hexachlorotantalate (IV), Cs\(_{2}\)TaCl\(_{6}\). Acta Crystallogr Sect E: Struct Rep Online 63:i22–i23

    Google Scholar 

  • Zhang Y, Xu X (2020a) Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression. Comput Mater Sci 179:109583. https://doi.org/10.1016/j.commatsci.2020.109583

    Article  Google Scholar 

  • Zhang Y, Xu X (2020b) Predicting AsxSe1−x glass transition onset temperature. Int J Thermophys. https://doi.org/10.1007/s10765-020-02734-4

    Article  Google Scholar 

  • Zhang Y, Xu X (2020c) Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression. J Magn Magn Mater 512:166998. https://doi.org/10.1016/j.jmmm.2020.166998

    Article  Google Scholar 

  • Zhang Y, Xu X (2020d) Machine learning lattice constants for cubic perovskite ABX3 compounds. Chem Sel. https://doi.org/10.1002/slct.202002532

    Article  Google Scholar 

  • Zhang Y, Xu X (2020e) Machine learning the magnetocaloric effect in manganites from compositions and structural parameters. AIP Adv 10(3):035220. https://doi.org/10.1063/1.5144241

    Article  Google Scholar 

  • Zhang Y, Xu X (2020f) Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. Phys Lett A 384:126500. https://doi.org/10.1016/j.physleta.2020.126500

    Article  Google Scholar 

  • Zhang Y, Xu X (2020g) Machine learning modeling of lattice constants for half-Heusler alloys. AIP Adv 10:045121. https://doi.org/10.1063/5.0002448

    Article  Google Scholar 

  • Zhang Y, Xu X (2020h) Machine learning optical band gaps of doped-ZnO films. Optik 217:164808. https://doi.org/10.1016/j.ijleo.2020.164808

    Article  Google Scholar 

  • Zhang Y, Xu X (2020i) Relative cooling power modeling of lanthanum manganites using Gaussian process regression. RSC Adv 10:20646–20653. https://doi.org/10.1039/D0RA03031G

    Article  Google Scholar 

  • Zhang Y, Xu X (2020j) Machine learning band gaps of doped-TiO\(_{2}\) photocatalysts from structural and morphological parameters. ACS Omega 5:15344–15352. https://doi.org/10.1021/acsomega.0c01438

    Article  Google Scholar 

  • Zhang Y, Xu X (2020k) Machine learning lattice constants for cubic perovskite \(A_{2}XY_{6}\) compounds. J Solid State Chem 291:121558. https://doi.org/10.1016/j.jssc.2020.121558

    Article  Google Scholar 

  • Zhang Y, Xu X (2020l) Machine learning lattice constants for cubic perovskite \(A_{2}^{2+}BB^{\prime }O_{6}\) compounds. CrystEngComm 2020:121558

    Google Scholar 

  • Zhang Y, Xu X (2020m) Machine learning lattice constants for cubic perovskite \(ABX_{3}\) compounds. ChemistrySelect

  • Zhang Y, Xu X (2020n) Predicting As\(_{x}\)Se\(_{1-x}\) glass transition onset temperature. Int J Thermophys

  • Zhang Y, Xu X (2020o) Machine learning lattice constants for orthorhombic perovskite ABO\(_{3}\) compounds. ACS Combinator Sci

  • Zhang Y, Xu X (2020p) Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys. Metals Mater Int

  • Zhang Y, Koch CC, Schwartz J (2014) Synthesis of Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O\(_{x}\) superconductors via direct oxidation of metallic precursors. Supercond Sci Technol 27(5):055016. https://doi.org/10.1088/0953-2048/27/5/055016

    Article  Google Scholar 

  • Zhang Y, Johnson S, Naderi G, Chaubal M, Hunt A, Schwartz J (2016) High critical current density Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag wire containing oxide precursor synthesized from nano-oxides. Supercond Sci Technol 29(9):095012. https://doi.org/10.1088/0953-2048/29/9/095012

    Article  Google Scholar 

  • Zhang Y, Koch CC, Schwartz J (2016) Formation of Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag multifilamentary metallic precursor powder-in-tube wires. Supercond Sci Technol 29(12):125005. https://doi.org/10.1088/0953-2048/29/12/125005

    Article  Google Scholar 

  • Zheng CF, Simcox T, Xu L, Vaillancourt P (1997) A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. Gene 186:55–60

    Google Scholar 

  • Zheng YQ, Peters K, Von Schnering HG (1997) “Crystal structure of dirubidium hexabromotungstate (IV), Rb\(_{2}\)WBr\(_{6}\). Zeitschrift für Kristallogr 1997:212

    Google Scholar 

  • Zheng YQ, Nuss J, Von Schnering HG (1998) Crystal structure of dithallium hexachlorotungstate (IV), Tl\(_{2}\) [WCl\(_{6}\)]. Zeitschrift für Kristallogr New Cryst Struct 213:500

    Google Scholar 

  • Zhong H, Xie L, Zhou J (2020) T-matrix formulation of electromagnetic wave scattering by charged non-spherical scatterers. J Quantit Spectrosc Radiat Transfer 2020:106952

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, X. Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite \(A_{2}XY_{6}\) compounds. Phys Chem Minerals 47, 39 (2020). https://doi.org/10.1007/s00269-020-01108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01108-4

Keywords

Navigation