Skip to main content
Log in

Aerodynamic optimisation of a high-speed train head shape using an advanced hybrid surrogate-based nonlinear model representation method

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

A global optimisation strategy based on the hybrid surrogate model method and the competitive mechanism-based multi-objective particle swarm optimisation (CMOPSO) algorithm was developed to improve the accuracy of the aerodynamic performance optimisation of a high-speed train running in open air without a crosswind. Free-form deformation was used to improve the optimisation efficiency without remodelling or remeshing. The sample points and their responses were obtained via optimal Latin hypercube sampling and computational fluid dynamics (CFD) simulations. The hybrid surrogate model (HSM) was constructed by using the theory of optimal weighted surrogate to combine a polynomial response surface (PRS) model with a radial basis function (RBF) model. Comprehensive error evaluation results indicated that the prediction accuracy achieved with the HSM was higher than that achieved with either the PRS model or the RBF model; thus, the HSM was selected for use in each iteration to approximate the CFD simulation model of the high-speed train in subsequent optimisation. Then, the CMOPSO algorithm was selected as the optimisation algorithm. After optimisation, a series of Pareto-optimal solutions was obtained, and the optimal and original head shapes were compared. The use of the hybrid surrogate model and the CMOPSO algorithm greatly improved the optimisation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Badawy MF, Msekh MA, Hamdia KM, Steiner MK, Lahmer T, Rabczuk T (2017) Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probab Eng Mech 50:64–75

    Article  Google Scholar 

  • Blazek J (2005) Computational fluid dynamics: principles and applications. Elsevier, Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  • Cheng R, Jin YC (2014) A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern 45(2):191–204

    Article  Google Scholar 

  • Cremanns K, Roos D, Hecker S, Dumstorff P, Almstedt H, Musch C (2016) Efficient multi-objective optimization of labyrinth seal leakage in steam turbines based on hybrid surrogate models. In: ASME Turbo Expo 2016: turbomachinery technical conference and exposition, pp V02CT45A024–V02CT45A024

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • He YR, Song BW, Cao YH (2018) Multi-step structural optimization design of multi-bubble pressure cabin in the autonomous underwater vehicle with blended-wing-body. J North Polytech Univ 36(4):664–670

    Google Scholar 

  • Hemida H, Krajnović S (2010) LES study of the influence of the nose shape and yaw angles on flow structures around trains. J Wind Eng Ind Aerodyn 98:34–46

    Article  Google Scholar 

  • Jin R, Chen W, Sudjianto A (2002) On sequential sampling for global metamodeling in engineering design. In: ASME 2002 international design engineering technical conferences and computers and information in engineering conference, pp 539–548

  • Kinoshita M, Kajiyama H, Tanemoto K (1987) Aerodynamic drag of Shinkansen electric cars (series 0, series 200, series 100). Q Rep RTRI 30:48–56

    Google Scholar 

  • Li R, Xu P, Peng Y, Ji P (2016) Multi-objective optimization of a high-speed train head based on the FFD method. J Wind Eng Ind Aerodyn 152:41–49

    Article  Google Scholar 

  • Liu JL, Li MG, Zhang JY, Zhang WH, Li M (2013) Multi-objective aerodynamic optimization design of streamlined head of high-speed train. SCIENT SINIC Tech 43(6):689–698

    Article  Google Scholar 

  • Matsumura T, Nakatani K, Fukuda T (1997) Effective nose shape for reducing tunnel sonic boom. Q Rep RTRI 38:206–211

    Google Scholar 

  • Mifsud D, Verdin PG (2019) Surrogate-based design optimisation tool for dual-phase fluid driving jet pump apparatus. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09373-5

    Article  Google Scholar 

  • Muñoz-Paniagua J, García J (2019) Aerodynamic surrogate-based optimization of the nose shape of a high-speed train for crosswind and passing-by scenarios. J Wind Eng Ind Aerodyn 184:139–152

    Article  Google Scholar 

  • Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. ACM SIGGRAPH Comput Graph 20(4):151–160

    Article  Google Scholar 

  • Sun Z, Zhang Y, Yang GW (2017) Surrogate based optimization of aerodynamic noise for streamlined shape of high speed trains. Appl Sci 7(2):196

    Article  Google Scholar 

  • Tian HQ (2019) Review of research on high-speed railway aerodynamics in China. Transp Saf Environ 1(1):1–21

    Article  Google Scholar 

  • Xie H, Yang Y, Tong LJ, Zeng W, Xie SC (2016) Multi-objective optimization of the suspension parameters for high speed rail vehicle based on a hybrid surrogate model. J Rail Sci Eng 13(10):2056–2063

    Google Scholar 

  • Xu G, Wang GZ, Chen XD (2010) Free form deformation and its application. J Comput Res Dev 47(2):344–352

    Google Scholar 

  • Xu G, Liang X, Yao S, Chen D, Li Z (2017) Multi-objective aerodynamic optimization of the streamlined shape of high-speed trains based on the Kriging model. PLoS ONE 12(1):e0170803

    Article  Google Scholar 

  • Yao SB, Guo DL, Sun ZX, Yang GW, Chen DW (2014) Optimization design for aerodynamic elements of high speed trains. Comput Fluids 95:56–73

    Article  Google Scholar 

  • Yao SB, Guo DL, Sun ZX, Chen DW, Yang GW (2016) Parametric design and optimization of high speed train nose. Optim Eng 3(17):605–630

    Article  Google Scholar 

  • Zhang J, Chowdhury S, Zhang ZQ (2013) Adaptive hybrid surrogate modeling for complex systems. AIAA J 51(3):643–656

    Article  Google Scholar 

  • Zhang Y, Yang GW, Sun ZX, Guo DL (2016) A general shape optimization method based on FFD approach with application to a high-speed train. J Multidiscip Eng Sci Technol 3(12):6181–6188

    Google Scholar 

  • Zhang L, Zhang JY, Li T, Zhang YD (2017a) Multi-objective optimization design of the streamlined head shape of super high-speed trains. J Mech Eng 53(2):106–114

    Article  Google Scholar 

  • Zhang L, Zhang J, Li T, Zhang Y (2017b) A multiobjective aerodynamic optimization design of a high-speed train head under crosswinds. J Rail Rap Trans 232(3):895–912

    Article  Google Scholar 

  • Zhang XY, Zheng XT, Cheng R, Qiu JF, Jin YC (2018) A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf Sci 427:63–76

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Yang GW, Guo DL, Sun ZX, Chen DW (2019a) A novel CACOR-SVR multi-objective optimization approach and its application in aerodynamic shape optimization of high-speed train. Soft Comput 23(13):5035–5051

    Article  Google Scholar 

  • Zhang N, Wang P, Dong HC, Li TB (2019b) Shape optimization for blended-wing-body underwater glider using an advanced multi-surrogate-based high-dimensional model representation method. Eng Optim. https://doi.org/10.1080/0305215X.2019.1694674

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper was undertaken at Key Laboratory of Traffic Safety on the Track of Ministry of Education, China. The authors gratefully acknowledge the support from the Project of National Key R&D Program of China (Grant No. 2016YFB1200506-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The model expressions

Appendix: The model expressions

$$\begin{aligned} Cd{\text{-}}total & = 0.324\left( {0.30548 - 0.00751h_{1} + 0.00728h_{2} + 0.00134l_{1} - 0.01812l_{2} + 0.00365w} \right. \\ & \quad + 0.06868h_{1} h_{2} - 0.06372h_{1} l_{1} - 0.12739h_{1} l_{2} - 0.06221h_{1} w - 0.09942h_{2} l_{1} \\ & \quad - 0.28692h_{2} l_{2} + 0.12927h_{2} w - 0.10190l_{1} l_{2} + 0.16831l_{1} w + 0.09664l_{2} w \\ & \quad \left. { - 0.09330h_{1}^{2} + 0.04975h_{2}^{2} - 0.12480l_{1}^{2} - 0.24282l_{2}^{2} - 0.06386w^{2} } \right) \\ & \quad + 0.676\left( { - 95.15519\sqrt {(h_{1} + 0.0483)^{2} + (h_{2} + 0.0531)^{2} + (l_{1} + 0.0017)^{2} + (l_{2} + 0.1)^{2} + (w + 0.0238)^{2} + 1} } \right. \\ & \quad - 525.76639\sqrt {(h_{1} + 0.0017)^{2} + (h_{2} + 0.0262)^{2} + (l_{1} + 0.05)^{2} + (l_{2} + 0.0328)^{2} + (w - 0.021)^{2} + 1} \\ & \quad + 208.12898\sqrt {(h_{1} - 0.0138)^{2} + (h_{2} + 0.0666)^{2} + (l_{1} - 0.0948)^{2} + (l_{2} + 0.069)^{2} + (w - 0.0121)^{2} + 1} \\ & \quad - 452.74486\sqrt {(h_{1} + 0.0793)^{2} + (h_{2} + 0.0576)^{2} + (l_{1} - 0.1362)^{2} + (l_{2} + 0.0586)^{2} + (w + 0.0283)^{2} + 1} \\ & \quad + 75.31201\sqrt {(h_{1} + 0.0948)^{2} + (h_{2} + 0.0128)^{2} + (l_{1} + 0.0431)^{2} + (l_{2} + 0.0276)^{2} + (w + 0.0372)^{2} + 1} \\ & \quad + 54.91733\sqrt {(h_{1} - 0.0241)^{2} + (h_{2} - 0.0321)^{2} + (l_{1} - 0.0741)^{2} + (l_{2} + 0.0121)^{2} + (w - 0.0255)^{2} + 1} \\ & \quad - 179.07452\sqrt {(h_{1} + 0.0586)^{2} + (h_{2} - 0.0366)^{2} + (l_{1} - 0.019)^{2} + (l_{2} - 0.0138)^{2} + (w + 0.0821)^{2} + 1} \\ & \quad + 7.64420\sqrt {(h_{1} + 0.0845)^{2} + (h_{2} + 0.0083)^{2} + (l_{1} - 0.0466)^{2} + (l_{2} + 0.0534)^{2} + (w - 0.03)^{2} + 1} \\ & \quad + 545.24477\sqrt {(h_{1} - 0.0345)^{2} + (h_{2} - 0.0276)^{2} + (l_{1} + 0.0224)^{2} + (l_{2} - 0.0086)^{2} + (w + 0.0417)^{2} + 1} \\ & \quad - 177.83921\sqrt {(h_{1} - 0.0448)^{2} + (h_{2} + 0.0486)^{2} + (l_{1} - 0.0397)^{2} + (l_{2} - 0.0293)^{2} + (w + 0.0014)^{2} + 1} \\ & \quad - 82.53965\sqrt {(h_{1} + 0.069)^{2} + (h_{2} + 0.0621)^{2} + (l_{1} - 0.0328)^{2} + (l_{2} + 0.0379)^{2} + (w + 0.0955)^{2} + 1} \\ & \quad - 233.08150\sqrt {(h_{1} - 0.0086)^{2} + (h_{2} + 0.0441)^{2} + (l_{1} - 0.1017)^{2} + (l_{2} + 0.0897)^{2} + (w + 0.0776)^{2} + 1} \\ & \quad + 130.18649\sqrt {(h_{1} + 0.0897)^{2} + (h_{2} - 0.0186)^{2} + (l_{1} - 0.0672)^{2} + (l_{2} + 0.0793)^{2} + (w + 0.0641)^{2} + 1} \\ & \quad + 29.11423\sqrt {(h_{1} - 0.05)^{2} + (h_{2} - 0.0007)^{2} + (l_{1} - 0.0259)^{2} + (l_{2} + 0.0845)^{2} + (w + 0.0193)^{2} + 1} \\ & \quad + 48.65003\sqrt {(h_{1} + 0.0069)^{2} + (h_{2} + 0.0755)^{2} + (l_{1} - 0.1155)^{2} + (l_{2} - 0.0241)^{2} + (w + 0.0597)^{2} + 1} \\ & \quad + 79.95596\sqrt {(h_{1} - 0.0034)^{2} + (h_{2} - 0.0231)^{2} + (l_{1} - 0.1086)^{2} + (l_{2} - 0.05)^{2} + (w + 0.0462)^{2} + 1} \\ & \quad + 156.33029\sqrt {(h_{1} - 0.0293)^{2} + (h_{2} + 0.071)^{2} + (l_{1} + 0.0155)^{2} + (l_{2} + 0.0431)^{2} + (w + 0.0552)^{2} + 1} \\ & \quad + 0.30842\sqrt {(h_{1} - 0.0397)^{2} + (h_{2} + 0.0217)^{2} + (l_{1} - 0.0603)^{2} + (l_{2} - 0.0034)^{2} + (w + 0.1)^{2} + 1} \\ & \quad - 403.37828\sqrt {(h_{1} + 0.0276)^{2} + (h_{2} + 0.0397)^{2} + (l_{1} + 0.0362)^{2} + (l_{2} - 0.0397)^{2} + (w + 0.0686)^{2} + 1} \\ & \quad - 111.82187\sqrt {(h_{1} + 0.0379)^{2} + (h_{2} - 0.05)^{2} + (l_{1} + 0.0086)^{2} + (l_{2} + 0.0638)^{2} + (w + 0.0103)^{2} + 1} \\ & \quad - 135.10940\sqrt {(h_{1} + 0.0741)^{2} + (h_{2} - 0.041)^{2} + (l_{1} - 0.1224)^{2} + (l_{2} + 0.0069)^{2} + (w + 0.0148)^{2} + 1} \\ & \quad - 240.06943\sqrt {(h_{1} + 0.0328)^{2} + (h_{2} + 0.0352)^{2} + (l_{1} - 0.1431)^{2} + (l_{2} - 0.019)^{2} + (w - 0.0166)^{2} + 1} \\ & \quad + 556.35432\sqrt {(h_{1} + 0.0638)^{2} + (h_{2} + 0.08)^{2} + (l_{1} - 0.0121)^{2} + (l_{2} + 0.0017)^{2} + (w - 0.0031)^{2} + 1} \\ & \quad + 631.28340\sqrt {(h_{1} + 0.0431)^{2} + (h_{2} + 0.0038)^{2} + (l_{1} - 0.15)^{2} + (l_{2} + 0.0172)^{2} + (w + 0.091)^{2} + 1} \\ & \quad + 400.51037\sqrt {(h_{1} + 0.0172)^{2} + (h_{2} - 0.0141)^{2} + (l_{1} - 0.1293)^{2} + (l_{2} + 0.0948)^{2} + (w + 0.0059)^{2} + 1} \\ & \quad + 292.16546\sqrt {(h_{1} + 0.0121)^{2} + (h_{2} - 0.0052)^{2} + (l_{1} + 0.0293)^{2} + (l_{2} + 0.0741)^{2} + (w + 0.0866)^{2} + 1} \\ & \quad + 211.55698\sqrt {(h_{1} + 0.0534)^{2} + (h_{2} - 0.0097)^{2} + (l_{1} - 0.0052)^{2} + (l_{2} - 0.0448)^{2} + (w - 0.0076)^{2} + 1} \\ & \quad - 22.87909\sqrt {(h_{1} + 0.0224)^{2} + (h_{2} + 0.0172)^{2} + (l_{1} - 0.0534)^{2} + (l_{2} + 0.0224)^{2} + (w + 0.0328)^{2} + 1} \\ & \quad - 699.57531\sqrt {(h_{1} - 0.019)^{2} + (h_{2} - 0.0455)^{2} + (l_{1} - 0.0879)^{2} + (l_{2} + 0.0483)^{2} + (w + 0.0731)^{2} + 1} \\ & \left. {\quad - 68.70866\sqrt {(h_{1} + 0.1)^{2} + (h_{2} + 0.0307)^{2} + (l_{1} - 0.081)^{2} + (l_{2} - 0.0345)^{2} + (w + 0.0507)^{2} + 1} + 0.30415} \right). \\ \end{aligned}$$
(26)
$$\begin{aligned} Cl{\text{-}}tail & = 0.763\left( {0.04545 - 0.01538h_{1} - 0.02708h_{2} - 0.01180l_{1} + 0.00677l_{2} + 0.02729w} \right. \\ & \quad - 0.15703h_{1} h_{2} - 0.05448h_{1} l_{1} - 0.30762h_{1} l_{2} - 0.28262h_{1} w + 0.22535h_{2} l_{1} \\ & \quad + 0.49945h_{2} l_{2} - 0.20745h_{2} w + 0.04662l_{1} l_{2} - 0.42554l_{1} w + 0.06141l_{2} w \\ & \quad \left. { + 0.07543h_{1}^{2} - 0.05892h_{2}^{2} - 0.12885l_{1}^{2} - 0.14775l_{2}^{2} - 0.01507w^{2} } \right) \\ & \quad + 0.237\left( { - 0.06203\sqrt {(h_{1} + 0.0483)^{2} + (h_{2} + 0.0531)^{2} + (l_{1} + 0.0017)^{2} + (l_{2} + 0.1)^{2} + (w + 0.0238)^{2} + 0.00091809} } \right. \\ & \quad + 0.01052\sqrt {(h_{1} + 0.0017)^{2} + (h_{2} + 0.0262)^{2} + (l_{1} + 0.05)^{2} + (l_{2} + 0.0328)^{2} + (w - 0.021)^{2} + 0.00091809} \\ & \quad + 0.01721\sqrt {(h_{1} - 0.0138)^{2} + (h_{2} + 0.0666)^{2} + (l_{1} - 0.0948)^{2} + (l_{2} + 0.069)^{2} + (w - 0.0121)^{2} + 0.00091809} \\ & \quad + 0.04790\sqrt {(h_{1} + 0.0793)^{2} + (h_{2} + 0.0576)^{2} + (l_{1} - 0.1362)^{2} + (l_{2} + 0.0586)^{2} + (w + 0.0283)^{2} + 0.00091809} \\ & \quad - 0.00627\sqrt {(h_{1} + 0.0948)^{2} + (h_{2} + 0.0128)^{2} + (l_{1} + 0.0431)^{2} + (l_{2} + 0.0276)^{2} + (w + 0.0372)^{2} + 0.00091809} \\ & \quad + 0.01364\sqrt {(h_{1} - 0.0241)^{2} + (h_{2} - 0.0321)^{2} + (l_{1} - 0.0741)^{2} + (l_{2} + 0.0121)^{2} + (w - 0.0255)^{2} + 0.00091809} \\ & \quad - 0.05807\sqrt {(h_{1} + 0.0586)^{2} + (h_{2} - 0.0366)^{2} + (l_{1} - 0.019)^{2} + (l_{2} - 0.0138)^{2} + (w + 0.0821)^{2} + 0.00091809} \\ & \quad - 0.01921\sqrt {(h_{1} + 0.0845)^{2} + (h_{2} + 0.0083)^{2} + (l_{1} - 0.0466)^{2} + (l_{2} + 0.0534)^{2} + (w - 0.03)^{2} + 0.00091809} \\ & \quad - 0.02874\sqrt {(h_{1} - 0.0345)^{2} + (h_{2} - 0.0276)^{2} + (l_{1} + 0.0224)^{2} + (l_{2} - 0.0086)^{2} + (w + 0.0417)^{2} + 0.00091809} \\ & \quad - 0.02318\sqrt {(h_{1} - 0.0448)^{2} + (h_{2} + 0.0486)^{2} + (l_{1} - 0.0397)^{2} + (l_{2} - 0.0293)^{2} + (w + 0.0014)^{2} + 0.00091809} \\ & \quad + 0.04118\sqrt {(h_{1} + 0.069)^{2} + (h_{2} + 0.0621)^{2} + (l_{1} - 0.0328)^{2} + (l_{2} + 0.0379)^{2} + (w + 0.0955)^{2} + 0.00091809} \\ & \quad - 0.04826\sqrt {(h_{1} - 0.0086)^{2} + (h_{2} + 0.0441)^{2} + (l_{1} - 0.1017)^{2} + (l_{2} + 0.0897)^{2} + (w + 0.0776)^{2} + 0.00091809} \\ & \quad + 0.07559\sqrt {(h_{1} + 0.0897)^{2} + (h_{2} - 0.0186)^{2} + (l_{1} - 0.0672)^{2} + (l_{2} + 0.0793)^{2} + (w + 0.0641)^{2} + 0.00091809} \\ & \quad + 0.02055\sqrt {(h_{1} - 0.05)^{2} + (h_{2} - 0.0007)^{2} + (l_{1} - 0.0259)^{2} + (l_{2} + 0.0845)^{2} + (w + 0.0193)^{2} + 0.00091809} \\ & \quad + 0.07057\sqrt {(h_{1} + 0.0069)^{2} + (h_{2} + 0.0755)^{2} + (l_{1} - 0.1155)^{2} + (l_{2} - 0.0241)^{2} + (w + 0.0597)^{2} + 0.00091809} \\ & \quad + 0.03233\sqrt {(h_{1} - 0.0034)^{2} + (h_{2} - 0.0231)^{2} + (l_{1} - 0.1086)^{2} + (l_{2} - 0.05)^{2} + (w + 0.0462)^{2} + 0.00091809} \\ & \quad - 0.06121\sqrt {(h_{1} - 0.0293)^{2} + (h_{2} + 0.071)^{2} + (l_{1} + 0.0155)^{2} + (l_{2} + 0.0431)^{2} + (w + 0.0552)^{2} + 0.00091809} \\ & \quad - 0.02948\sqrt {(h_{1} - 0.0397)^{2} + (h_{2} + 0.0217)^{2} + (l_{1} - 0.0603)^{2} + (l_{2} - 0.0034)^{2} + (w + 0.1)^{2} + 0.00091809} \\ & \quad + 0.10118\sqrt {(h_{1} + 0.0276)^{2} + (h_{2} + 0.0397)^{2} + (l_{1} + 0.0362)^{2} + (l_{2} - 0.0397)^{2} + (w + 0.0686)^{2} + 0.00091809} \\ & \quad + 0.01717\sqrt {(h_{1} + 0.0379)^{2} + (h_{2} - 0.05)^{2} + (l_{1} + 0.0086)^{2} + (l_{2} + 0.0638)^{2} + (w + 0.0103)^{2} + 0.00091809} \\ & \quad - 0.01329\sqrt {(h_{1} + 0.0741)^{2} + (h_{2} - 0.041)^{2} + (l_{1} - 0.1224)^{2} + (l_{2} + 0.0069)^{2} + (w + 0.0148)^{2} + 0.00091809} \\ & \quad + 0.01664\sqrt {(h_{1} + 0.0328)^{2} + (h_{2} + 0.0352)^{2} + (l_{1} - 0.1431)^{2} + (l_{2} - 0.019)^{2} + (w - 0.0166)^{2} + 0.00091809} \\ & \quad - 0.04961\sqrt {(h_{1} + 0.0638)^{2} + (h_{2} + 0.08)^{2} + (l_{1} - 0.0121)^{2} + (l_{2} + 0.0017)^{2} + (w - 0.0031)^{2} + 0.00091809} \\ & \quad - 0.08451\sqrt {(h_{1} + 0.0431)^{2} + (h_{2} + 0.0038)^{2} + (l_{1} - 0.15)^{2} + (l_{2} + 0.0172)^{2} + (w + 0.091)^{2} + 0.00091809} \\ & \quad + 0.00608\sqrt {(h_{1} + 0.0172)^{2} + (h_{2} - 0.0141)^{2} + (l_{1} - 0.1293)^{2} + (l_{2} + 0.0948)^{2} + (w + 0.0059)^{2} + 0.00091809} \\ & \quad + 0.0517\sqrt {(h_{1} + 0.0121)^{2} + (h_{2} - 0.0052)^{2} + (l_{1} + 0.0293)^{2} + (l_{2} + 0.0741)^{2} + (w + 0.0866)^{2} + 0.00091809} \\ & \quad - 0.02626\sqrt {(h_{1} + 0.0534)^{2} + (h_{2} - 0.0097)^{2} + (l_{1} - 0.0052)^{2} + (l_{2} - 0.0448)^{2} + (w - 0.0076)^{2} + 0.00091809} \\ & \quad + 0.00487\sqrt {(h_{1} + 0.0224)^{2} + (h_{2} + 0.0172)^{2} + (l_{1} - 0.0534)^{2} + (l_{2} + 0.0224)^{2} + (w + 0.0328)^{2} + 0.00091809} \\ & \quad + 0.02216\sqrt {(h_{1} - 0.019)^{2} + (h_{2} - 0.0455)^{2} + (l_{1} - 0.0879)^{2} + (l_{2} + 0.0483)^{2} + (w + 0.0731)^{2} + 0.00091809} \\ & \quad \left. { - 0.04500\sqrt {(h_{1} + 0.1)^{2} + (h_{2} + 0.0307)^{2} + (l_{1} - 0.081)^{2} + (l_{2} - 0.0345)^{2} + (w + 0.0507)^{2} + 0.00091809} + 0.04367} \right). \\ \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Xiong, X., Yang, B. et al. Aerodynamic optimisation of a high-speed train head shape using an advanced hybrid surrogate-based nonlinear model representation method. Optim Eng 23, 59–84 (2022). https://doi.org/10.1007/s11081-020-09554-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09554-3

Keywords

Navigation