Skip to main content
Log in

Numerical computation of the coefficients in exponential fitting

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We show that a direct numerical computation of the coefficients of any method based on the exponential fitting is possible. This makes unnecessary the knowledge of long sets of analytical expressions for the coefficients, as usually presented in the literature. Consequently, the task of any potential user for writing his/her own code becomes much simpler. The approach is illustrated on the case of the Numerov method for the Schrödinger equation, on a version for which the analytic expressions of coefficients are not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Kluwer Academic Publishers, Dordrecht/Boston/London (2004)

    Book  Google Scholar 

  2. Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70-th anniversary. Comput. Phys. Commun. 183, 2499–2512 (2012)

    Article  MathSciNet  Google Scholar 

  3. Calvo, M., Franco, J.M., Montijano, J.I., Randez, L.: Explicit Runge-Kutta methods for initial value problems with oscillating solutions. J. Comput. Appl. Math. 76, 195–212 (1996)

    Article  MathSciNet  Google Scholar 

  4. Dai, Y., Wang, Z., Wu, D.: A four-step trigonometric fitted P-stable Obrechkoff method for periodic initial-value problems. J. Comput. Appl. Math. 187, 192–201 (2006)

    Article  MathSciNet  Google Scholar 

  5. Franco, J.M.: Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177, 479–492 (2007)

    Article  MathSciNet  Google Scholar 

  6. Kim, K.J., Cools, R.: Extended exponentially fitted interpolation formulas for oscillatory functions. Appl. Math. Comput. 224, 178–195 (2013). https://doi.org/10.1016/j.amc.2013.08.039

    Article  MathSciNet  MATH  Google Scholar 

  7. Conte, D., Paternoster, B.: Modified Gauss–Laguerre exponential fitting based formulae. J. Sci. Comput. 69, 227–243 (2016). https://rd.springer.com/journal/10915

    Article  MathSciNet  Google Scholar 

  8. Cardone, A., D’Ambrosio, R., Paternoster, B.: Exponentially fitted IMEX methods for advection–diffusion problems. J. Comput. Appl. Math. 316, 100–108 (2017)

    Article  MathSciNet  Google Scholar 

  9. Ngwane, F.F., Jator, S.N.: A trigonometrically fitted block method for solving oscillatory second-order initial value problems and hamiltonian systems. International Journal of Differential Equations Article ID 9293530. https://doi.org/10.1155/2017/9293530 (2017)

  10. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts. Comput. Math. Appl. 74, 1029–1042 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cardone, A., D’Ambrosio, R., Paternoster, B.: High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl. Num. Math. 114, 18–29 (2017). http://www.sciencedirect.com/science/journal/01689274

    Article  MathSciNet  Google Scholar 

  12. Medvedev, M.A., Simos, T.E., Tsitouras, C.: Fitted modifications of Runge-Kutta pairs of orders 6(5). Math Meth. Appl. Sci. 41, 6184–6194 (2018). https://doi.org/10.1002/mma.5128

    Article  MathSciNet  MATH  Google Scholar 

  13. Franco, J.M., Randez, L.: A class of explicit high-order exponentially-fitted two-step methods for solving oscillatory IVPs. J. Comput. Appl. Math. 342, 210–224 (2018)

    Article  MathSciNet  Google Scholar 

  14. Fang, Y., Yang, Y., You, X.: Fitted two-step hybrid methods for the resonant state of the Schrodinger equation. Int. J. Mod. Phys. C 29Art. No 1850055 (2018)

  15. Zahra, W.K., Nasr, M.A., Van Daele, M.: Exponentially fitted methods for solving time fractional nonlinear reaction-diffusion equation. Appl. Math. Comput. 358, 468–490 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Xu, M., Simos, T.E.: A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J. Math. Chem. 57, 1710–1731 (2019). https://doi.org/10.1007/s10910-019-01033-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, Z., Luo, J., Lin, C.-L., Simos, T.E.: Full in phase finite difference algorithm for differential equations in quantum chemistry. J. Math. Chem. 58, 1197–1218 (2020). https://doi.org/10.1007/s10910-020-01125-2

    Article  MathSciNet  Google Scholar 

  18. Ixaru, L.Gr.: Exponential and trigonometrical fittings: user-friendly expressions for the coefficients, vol. 82 (2019)

  19. Ixaru, L.Gr.: Operations on oscillatory functions. Comput. Phys. Commun. 105, 1–19 (1997)

    Article  MathSciNet  Google Scholar 

  20. Ixaru, L.Gr., De Meyer, H., Vanden Berghe, G., Van Daele, M.: A regularization procedure for \({\sum }_{i=1}^{n} f_{i}(z_{j})x_{i}=g(z_{j}); (j = 1, 2,\cdots , n)\). J. of Linear Algebra 3, 81–90 (1996)

    Article  Google Scholar 

  21. Ixaru, L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht-Boston-Lancaster (1984)

    MATH  Google Scholar 

  22. Child, M.S., Chambers, A.V.: Persistent accidental degeneracies for the Coffey-Evans potential. J. Phys. Chem. 92, 3122–3124 (1988)

    Article  Google Scholar 

  23. Marletta, M.: Certification of algorithm 700 numerical tests of the SLEIGN software for Sturm-Liouville problems. ACM Trans. Math. Softw. 17, 481–490 (1991)

    Article  Google Scholar 

  24. Conte, D., Esposito, E., Paternoster, B., Ixaru, L.Gr.: Some new uses of the ηm(z) functions. Comput. Phys. Commun. 181, 128–137 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported in the frame of contract PN 18090101/ 2018 with the Romanian Ministry of Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gr. Ixaru.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Eta functions η− 1(Z),η0(Z),η1(Z),... are defined as follows [1, 19, 21]:

The first two are

$$ \eta_{-1}(Z)=\left \{ \begin{array}{ll} \cos(|Z|^{1/2})& \text{if} Z\leq 0\\ \cosh(Z^{1/2})& \text{if} Z>0 \end{array}\right. ,~~~~\eta_{0}(Z)=\left \{ \begin{array}{ll} \frac{\sin(|Z|^{1/2})}{|Z|^{1/2}} & \text{if} Z< 0\\ 1& \text{if} Z=0\\ \frac{\sinh(Z^{1/2})}{Z^{1/2}}& \text{if} Z>0 \end{array}\right. . $$
(18)

In some papers, function η− 1(Z) is denoted ξ(Z).

Functions ηm(Z) with m > 0 are generated by recurrence

$$ \eta_m(Z)=\frac{\eta_{m-2}(Z)-(2m-1)\eta_{m-1}(Z)}{Z},~~~~m=1,2,3,... $$
(19)

if Z≠ 0, and by following values at Z = 0 :

$$ \eta_m(0)=\frac{1}{(2m+1)!!},~~~~m=1,2,3,... $$
(20)

Some useful properties are:

Series expansion:

$$ \eta_m(Z)=2^m\sum\limits_{q=0}^{\infty}\frac{(q+m)!}{q!(2q+2m+1)!}Z^q,~~~m=0,1,2,... $$
(21)

Asymptotic behavior at large |Z| :

$$ \eta_m(Z)\approx \left \{ \begin{array}{ll} \frac{\eta_{-1}(Z)}{Z^{(m+1)/2}}& \text{for~ odd}~ m\\ \frac{\eta_0(Z)}{Z^{m/2}} & \text{for~ even}~ m. \end{array}\right. $$
(22)

Differentiation properties:

$$ \eta^{\prime}_m(Z)=\frac{1}{2}\eta_{m+1}(Z),~~~m=-1,0,1,2,... $$
(23)

The latter is important in subroutine REGSOLV for solving (3) because there the expressions of the derivatives of functions Fn(Z),n = 1,2,⋯ ,N and B(Z) are also requested.

The expressions needed in system (4) for these functions and their derivatives are:

$$ F_{1}(Z)=- 1 \text{and} F_{1}^{(m)}(Z)=0 \text{for} m\geq 1, $$
$$ \begin{array}{@{}rcl@{}} &&F_{2}(Z)=2Z\eta_{-1}(Z), F^{(1)}_{2}(Z)= 2\eta_{-1}(Z)+Z\eta_{0}(Z) \text{and}\\ &&F^{(m)}_{2}(Z) = 2^{1-m} [\eta_{m-3}(Z)+3\eta_{m-2}(Z)] \text{for} m\geq 2, \end{array} $$
$$ F_{3}(Z)=Z, F^{(1)}_{3}(Z)=1 \text{and} F^{(m)}_{3}(Z)=0 \text{for} m\geq 2, $$
$$ B(Z)=2\eta_{-1}(Z) \text{and} B^{(m)}(Z)=2^{1-m}\eta_{m-1}(Z) \text{for} m\geq 1. $$

Codes for the computation of the eta functions are available: subroutines GEBASE and GEBASEV (fortran 95, double precision arithmetic) in the compact disk attached to book [1]; see also formConv (mathematica) in [24].

For solving (4), we have used derivatives up to mmax = 30 with eta functions computed by GEBASEV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ixaru, L.G. Numerical computation of the coefficients in exponential fitting. Numer Algor 87, 1097–1106 (2021). https://doi.org/10.1007/s11075-020-01000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01000-w

Keywords

Navigation