Skip to main content

Advertisement

Log in

Understanding the enzymatic inhibition of intestinal alkaline phosphatase by aminophenazone-derived aryl thioureas with aided computational molecular dynamics simulations: synthesis, characterization, SAR and kinetic profiling

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The work presented in this paper aims toward the synthesis of aryl thiourea derivatives 4al of pyrazole based nonsteroidal anti-inflammatory drug named 4-aminophenazone, as potential inhibitors of intestinal alkaline phosphatase enzyme. The screening of synthesized target compounds 4al for unraveling the anti-inflammatory potential against calf intestinal alkaline phosphatase gives rise to lead member 4c possessing IC50 value 0.420 ± 0.012 µM, many folds better than reference standard used (KH2PO4 IC50= 2.8 ± 0.06 µM and l-phenylalanine IC50 = 100 ± 3.1 µM). SAR for unfolding the active site binding pocket interaction along with the mode of enzyme inhibition based on kinetic studies is carried out which showed non-competitive binding mode. The enzyme inhibition studies were further supplemented by molecular dynamic simulations for predicting the protein behavior against active inhibitors 4c and 4g during docking analysis. The preliminary toxicity of the synthesized compounds was determined by using brine shrimp assay. This work also includes detailed biochemical analysis along with RO5 parameters for all the newly synthesized drug derivatives 4al.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Millan JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley, Weinheim

    Book  Google Scholar 

  2. Lalles JP (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68:323–332

    Article  PubMed  Google Scholar 

  3. Lalles JP (2014) Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 72:82–94

    Article  PubMed  Google Scholar 

  4. Belli S, Sali A, Goding JW (1994) Divalent cations stabilize the conformation of plasma cell membrane glycoprotein PC-1 (alkaline phosphodiesterase I). Biochem J 304:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fleisch H, Bisaz S (1962) Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195(911):911

    Article  CAS  PubMed  Google Scholar 

  6. Anderson HC, Hsu HH, Morris DC, Fedde KN, Whyte MP (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am J Pathol 151(15):55–61

    Google Scholar 

  7. Millan JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93:299–306

    Article  CAS  PubMed  Google Scholar 

  8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  9. Knapp K, Zebisch M, Pippel J, El-Tayeb A, Müller CE, Sträter N (2012) Crystal structure of the human ecto-5′-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure 20:2161–2173

    Article  CAS  PubMed  Google Scholar 

  10. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2009) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  11. Sergienko EA, Millán JL (2010) High-throughput screening of tissue-nonspecific alkaline phosphatase for identification of effectors with diverse modes of action. Nat Protoc 5:1431–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahmood A, Engle MJ, Alpers DH (2002) Secreted intestinal surfactant-like particles interact with cell membranes and extracellular matrix proteins in rats. J Physiol 542(237):44

    Google Scholar 

  13. McConnell RE, Higginbotham JN, Shifrin DA, Tabb DL, Coffey RJ, Tyska MJ (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185(12):85–98

    Google Scholar 

  14. Akiba Y, Mizumori M, Guth PH, Engel E, Kaunitz JD (2007) Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats. Am J Physiol Gastrointest Liver Physiol 293:1223–1233

    Article  CAS  Google Scholar 

  15. Šefčíková Z, Hájek T, Lenhardt L, Racek L, Mozes S (2008) Different functional responsibility of the small intestine to high-fat/high-energy diet determined the expression of obesity-prone and obesity-resistant phenotypes in rats. Physiol Res 57(4):67–74

    Google Scholar 

  16. Barbier de La Serre C, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299(2):G440–G448

    Article  CAS  Google Scholar 

  17. Malo MS (2015) A high level of intestinal alkaline phosphatase is protective against type 2 diabetes mellitus irrespective of obesity. EBioMedicine 2:2016–2023

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kaliannan K, Hamarneh SR, Economopoulos KP, Alam SN, Moaven O, Patel P (2013) Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA 110:7003–7008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29(3):269–278

    Article  CAS  PubMed  Google Scholar 

  20. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  PubMed  Google Scholar 

  21. Ghorab MM, El-Gaby MSA, Safwat NA, Elaasser MM, Soliman AM (2016) Biological evaluation of some new N-(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur J Med Chem 124(29):299–310

    Article  CAS  PubMed  Google Scholar 

  22. Sjid ur Rehman, Saeed A, Saddique G, Channar PA, Laraik FA, Abbas Q, Hassan M, Raza H, Fattah TA, Seo SY (2018) Synthesis of sulfadiazinyl acyl/aryl thiourea derivatives as calf intestinal alkaline phosphatase inhibitors, pharmacokinetic properties, lead optimization, Lineweaver–Burk plot evaluation and binding analysis. Bioorg Med Chem 26(12):3707–3715

    Article  CAS  Google Scholar 

  23. Marwa SY, El-Sharief AM, Basyouni WM, Fakhr IMI, El-Gammal EW (2013) Thiourea derivatives incorporating a hippuric acid moiety: synthesis and evaluation of antibacterial and antifungal activities. Eur J Med Chem 64:111–120

    Article  CAS  Google Scholar 

  24. Li JP, Luo QF, Wang YL, Wang H (2001) Solvent-free synthesis of heterocyclic thioureas using microwave technology. J Chin Chem Soc 48(1):73–75

    Article  CAS  Google Scholar 

  25. Glasser AC, Doughty RM (1962) Substituted heterocyclic thioureas I. Antitubercular activity. J Pharma Sci 51:1031–1033

    Article  CAS  Google Scholar 

  26. Shah AC, Herd AK (1973) Pharmaceutical sciences—1972: literature review of pharmaceutics I. Egypt. J Pharmaceut Sci 14:214

    Google Scholar 

  27. Strukil V (2017) Mechanochemical synthesis of thioureas, ureas and guanidines. Beilstein J Org Chem 13:1828–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ngaini Z, Zulkiplee WZHW, Halim ANA (2017) One-pot multicomponent synthesis of thiourea derivatives in cyclotriphosphazenes moieties. J Chem. https://doi.org/10.1155/2017/1509129

    Article  Google Scholar 

  29. Štrukil V, Margetić D, Igrc MD, Eckert-Maksić M, Friščić T (2012) Desymmetrisation of aromatic diamines and synthesis of non-symmetrical thiourea derivatives by click-mechanochemistry. Chem Commun 48:9705–9707

    Article  CAS  Google Scholar 

  30. Đud M, Magdysyuk OV, Margetić D, Štrukil V (2016) Synthesis of monosubstituted thioureas by vapour digestion and mechanochemical amination of thiocarbamoyl benzotriazoles. Green Chem 18:2666–2674

    Article  CAS  Google Scholar 

  31. Li AF, Wang JH, Wang F, Jiang YB (2010) Anion complexation and sensing using modified urea and thiourea-based receptors. Chem Soc Rev 39:3729–3745

    Article  CAS  PubMed  Google Scholar 

  32. Bregović N, Cindro N, Frkanec L, Užarević K, Tomišić V (2014) Thermodynamic study of dihydrogen phosphate dimerisation and complexation with novel urea- and thiourea-based receptors. Chem A Eur J 20(48):15863–15871

    Article  CAS  Google Scholar 

  33. Mumtaza A, Saeeda K, Mahmood A, Zaib S, Saeed A, Pelletier J, Sévigny J, Iqbal J (2010) Bisthioureas of pimelic acid and 4-methylsalicylic acid derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP): synthesis and molecular docking studies. Bioorg Chem 101:103996

    Article  CAS  Google Scholar 

  34. Dharmasiri MG, Jayakody JRAC, Galhena G, Liyanage SSP, Ratnasooriya WD (2003) Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. J Ethnopharmacol 87:199–206

    Article  CAS  PubMed  Google Scholar 

  35. Turan-Zitouni G, Sivaci M, Kiliç FS, Erol K (2001) Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity. Eur J Med Chem 36:685–689

    Article  CAS  PubMed  Google Scholar 

  36. Channar PA, Afzal S, Ejaz SA, Saeed A, Laraik FA, Mahesar PA, Lecka J, Sévigny J, Erben MF, Iqbal J (2018) Exploration of carboxy pyrazole derivatives: synthesis, alkaline phosphatase, nucleotide pyrophosphatase/phosphodiesterase and nucleoside triphosphate diphosphohydrolase inhibition studies with potential anticancer profile. Eur J Med Chem 5(156):461–478

    Article  CAS  Google Scholar 

  37. Ayako K, Hidehiko N, Ryo O, Tomoko F, Shigeru O, Takayoshi S, Naoki M (2007) New series of antiprion compounds: pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation. J Med Chem 50:5053–5056

    Article  CAS  Google Scholar 

  38. Shyama S, Robert A, Ying S, Sonoko N, Brock B, José Luis M, Eduard S, Nicholas DPC (2009) Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg Med Chem Lett 19:222–225

    Article  CAS  Google Scholar 

  39. Aamer S, Syeda AE, Asma K, Sidra H, Mariya R, Muhammad L, Joanna L, Jean S, Iqbal J (2015) Synthesis, characterization and biological evaluation of N-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)benzamides. RSC Adv 5(105):86428–86439

    Article  CAS  Google Scholar 

  40. Ashraf Z, Rafiq M, Seo S-Y, Kwon K, Babar MM (2015) Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. Eur J Med Chem 98:203–211

    Article  CAS  PubMed  Google Scholar 

  41. Iqbal J, El-Gamal MI, Ejaz SA, Lecka J, Sevigny J, Ohg CH (2018) Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: in vitro and docking studies. J Enzyme Inhib Med Chem 33(1):479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peter E, Bernhard R, Paul S (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717

    Article  CAS  Google Scholar 

  43. Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallano JP (2012) Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 3:50–68

    Article  CAS  PubMed  Google Scholar 

  44. Kadam RU, Roy N (2007) Recent trends in drug-likeness prediction: a comprehensive review of in silico methods. Indian J Pharm Sci 69:609–615

    Article  CAS  Google Scholar 

  45. Bakht MA, Yar MS, Abdel-Hamid SG, Al-Qasoumi SI, Samad A (2010) Molecular properties prediction, synthesis and antimicrobial activity of some newer oxadiazole derivatives. Eur J Med Chem 45:5862–5869

    Article  CAS  PubMed  Google Scholar 

  46. Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86:2–10

    Article  CAS  PubMed  Google Scholar 

  47. Millán JL (2006) Alkaline phosphatases. Purinergic Signal 2(1):335–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Stec B, Cheltsoy A, Millán JL (2010) Refined structures of placental alkaline phosphatase show a consistent pattern of interactions at the peripheral site. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(1):866–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asma Khurshid or Aamer Saeed.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurshid, A., Saeed, A., Ashraf, Z. et al. Understanding the enzymatic inhibition of intestinal alkaline phosphatase by aminophenazone-derived aryl thioureas with aided computational molecular dynamics simulations: synthesis, characterization, SAR and kinetic profiling. Mol Divers 25, 1701–1715 (2021). https://doi.org/10.1007/s11030-020-10136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10136-9

Keywords

Navigation