Skip to main content
Log in

pH and temperature-responsive POSS-based poly(2-(dimethylamino)ethyl methacrylate) for highly efficient Cr(VI) adsorption

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Sixteen-arm star-shaped polymer of s-POSS-(PDMAEMA)16 was synthesized by octakis(dibromoethyl) polyhedral oligomeric silsesquioxane (POSS-(Br)16) initiating 2-(dimethylamino)ethyl methacrylate (DMAEMA) via atom transfer radical polymerization (ATRP) process. The obtained s-POSS-(PDMAEMA)16 showed controllable and reversible pH-responsive behavior at pH = 1–12 and thermoresponsive behavior at 20–60 °C. Typical core/shell micelles (100–130 nm) were formed by s-POSS-(PDMAEMA)16 at pH = 7.8 and transformed into 450–600 nm snowflake-shaped micelles at pH = 6, 400 nm butterfly-shaped micelles at pH = 3, and 20–40 nm spherical particles at pH = 10 due to the different interactions between the PDMAEMA chains and the aqueous solution. When the pH of the solution decreased from 10 to 3, 350–400 nm butterfly-shaped micelles were reformed, demonstrating the reversibility of this process. The soluble-insoluble transition temperature for s-POSS-(PDMAEMA)16 was located between 20 and 60 °C. Furthermore, equilibrium adsorption indicated that s-POSS-(PDMAEMA)16 could adsorb Cr(VI) due to strong electrostatic interactions between its tertiary amines and Cr(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Kelley EG, Albert JNL, Sullivan MO, Epps T (2013) Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev 42:7057–7071

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Dai S, Ravi P, Tam KC (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–2533

    CAS  Google Scholar 

  3. Yuba E (2020) Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B 8:1093–1107

    PubMed  CAS  Google Scholar 

  4. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliver Rev 64:866–884

    CAS  Google Scholar 

  5. Wong S, Shim MS, Kwon YJ (2014) Synthetically designed peptide-based biomaterials with stimuli-responsive and membrane-active properties for biomedical applications. J Mater Chem B 2:595–615

    PubMed  CAS  Google Scholar 

  6. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    CAS  Google Scholar 

  7. Li L, Yang WW, Xu DG (2019) Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J Drug Target 27:423–433

    PubMed  CAS  Google Scholar 

  8. Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    PubMed  CAS  Google Scholar 

  9. Chen CE, Geng J, Pu F, Yang XJ, Ren JS, Qu XG (2011) Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: dual stimuli-responsive vehicles for intracellular drug delivery. Angew Chem Int Ed 50:882–886

    CAS  Google Scholar 

  10. Zhang Q, Ko NR, Oh JK (2012) Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun 48:7542–7552

    CAS  Google Scholar 

  11. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    CAS  Google Scholar 

  12. Guaresti O, García-Astrain C, Aguirresarobe RH, Eceiza A, Gabilondoa N (2018) Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking ‘click’ reaction as potential carriers for drug administration. Carbohydr Polym 183:278–286

    PubMed  CAS  Google Scholar 

  13. Cayre OJ, Chagneux N, Biggs S (2011) Stimulus responsive core-shell nanoparticles: synthesis and applications of polymer based aqueous systems. Soft Matter 7:2211–2234

    CAS  Google Scholar 

  14. Cho SH, Shim J, Moon SH (2009) Detoxification of simulated textile wastewater using a membraneless electrochemical reactor with immobilized peroxidase. J Hazard Mater 162:1014–1018

    PubMed  CAS  Google Scholar 

  15. Zhao LY, Li L, Wang YX, Wu JN, Meng GH, Liu ZY, Guo XH (2018) Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation. Applied Physics A 124:9

    Google Scholar 

  16. Kumar PA, Chakraborty S, Ray M (2008) Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber. Chem Eng J 141:130–140

    CAS  Google Scholar 

  17. Yusof AM, Malek NANN (2009) Removal of Cr(VI) and As(V) from aqueous solutions by hdtma-modified zeolite y. J Hazard Mater 162:1019–1024

    PubMed  CAS  Google Scholar 

  18. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211

    CAS  Google Scholar 

  19. England D, Tambe N, Texter J (2012) Stimuli-responsive nanolatexes: porating films. ACS Macro Lett 1:310–314

    CAS  Google Scholar 

  20. Koenig M, Magerl D, Philipp M, Eichhorn KJ, Müller M, Müller-Buschbaum P, Stamm M, Uhlmann P (2014) Nanocomposite coatings with stimuli-responsive catalytic activity. RSC Adv 4:17579–17586

    CAS  Google Scholar 

  21. Stefaniu C, Chanana M, Wang D, Brezesinski G, Mohwald H (2011) Stimuli-responsive magnetite nanoparticle monolayers. J Phys Chem C 115:5478–5484

    CAS  Google Scholar 

  22. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483

    PubMed  CAS  Google Scholar 

  23. Petrov P, Tsvetanov CB, Jerome R (2009) Stabilized mixed micelles with a temperature-responsive core and a functional shell. J Phys Chem 113:7527–7533

    CAS  Google Scholar 

  24. Xu W, Ledin PA, Plamper FA, Synatschke CV, Müller AHE, Tsukruk VV (2014) Multiresponsive microcapsules based on multilayerassembly of star polyelectrolytes. Macromolecules 47:7858–7868

    CAS  Google Scholar 

  25. Lee H, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K (2007) Light-induced reversible formation of polymeric micelles. Angew Chem Int Ed 46:2453–2457

    CAS  Google Scholar 

  26. Smith AE, Xu X, Mccormick CL (2010) Stimuli-responsive amphiphilic (co)polymers via raft polymerization. Prog Polym Sci 35:45–93

    CAS  Google Scholar 

  27. Li YM, Lin JT, Zhi XL, Li PF, Jiang XF, Yuan J (2018) Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Mat Sci Eng C 91:606–614

    CAS  Google Scholar 

  28. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    PubMed  Google Scholar 

  29. Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Stimuli-responsive mechanically adaptive polymer nanocomposites. ACS Appl Mater Interfaces 2:165–174

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Han X, Zhang X, Zhu H, Yin Q, Liu H, Hu Y (2013) Effect of composition of PDMAEMA- b -PAA block copolymers on their pH- and temperature-responsive behaviors. Langmuir 29:1024–1034

    PubMed  CAS  Google Scholar 

  31. Ma L, Geng H, Song J, Li J, Chen G, Li Q (2011) Hierarchical self-assembly of polyhedral oligomeric silsesquioxane end-capped stimuli-responsive polymer: from single micelle to complex micelle. J Phys Chem B 115:10586–10591

    PubMed  CAS  Google Scholar 

  32. Venault A, Huang CW, Zheng J, Chinnathambi A, Alharbi SA, Chang Y, Chang Y (2016) Hemocompatible biomaterials of zwitterionic sulfobetaine hydrogels regulated with pH-responsive DMAEMA random sequences. Int J Polym Mater Po 65:65–74

    CAS  Google Scholar 

  33. Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Magn Mater 321:2799–2804

    CAS  Google Scholar 

  34. Zhang Q, Tosi F, Ugduler S, Maji S, Hoogenboom R (2014) Tuning the LCST and UCST Thermoresponsive behavior of poly(N,N-dimethylaminoethyl methacrylate) by electrostatic interactions with trivalent metal hexacyano anions and copolymerization. Macromol Rapid Commun 36:633–639

    PubMed  Google Scholar 

  35. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696

    CAS  Google Scholar 

  36. Bonhomme C, Ribot F, Babonneau F, Dire S (2009) New monofunctional POSS and its utilization as dewetting additive in methacrylate based free-standing films. Chem Mater 21:4163–4171

    Google Scholar 

  37. Tan BH, Hussain H, Lin TT, Chua YC, Leong YW, Tjiu WW, Wong PK, He CB (2011) Stable dispersions of hybrid nanoparticles induced by Stereocomplexation between enantiomeric poly(lactide) star polymers. Langmuir 27:10538–10547

    PubMed  CAS  Google Scholar 

  38. Ye YS, Shen WC, Tseng CY, Rick J, Huang YJ, Chang FC, Hwang BJ (2011) Versatile grafting approaches to star-shaped POSS-containing hybrid polymers using RAFT polymerization and click chemistry. Chem Commun 47:10656–10658

    CAS  Google Scholar 

  39. Wang W, Fei M, Jie X, Wang P, Cao H, Yu J (2010) Synthesis and characterization of star-shaped block copolymers with polyhedral oligomeric silsesquioxane (POSS)core via ATRP. Polym Bull 65:863–872

    CAS  Google Scholar 

  40. Ramirez SM, Diaz YJ, Campos R, Stone RL, Haddad TS, Mabry JM (2011) Incompletely condensed fluoroalkyl silsesquioxanes and derivatives: precursors for low surface energy materials. J Am Chem Soc 133:20084–20087

    PubMed  CAS  Google Scholar 

  41. Wetering PVD, Zuidam NJ, Steenbergen MJV, Houwen OAGJVD, Underberg WJM, Hennink WE (1998) A mechanistic study of the hydrolytic stability of poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 31:8063–8068

    Google Scholar 

  42. Zhou L, Yuan W, Yuan J, Hong X (2008) Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Mater Lett 62:1372–1375

    CAS  Google Scholar 

  43. Li L, Lu BB, Fan QK, Wu JN, Wei LL, Hou J, Guo XH, Liu ZY (2016) Synthesis and self-assembly behavior of ph-responsive star-shaped POSS-(PCL-P(DMAEMA-co-PEGMA))16 inorganic/organic hybrid block copolymer for the controlled intracellular delivery of doxorubicin. RSC Adv 6:61630–61640

    CAS  Google Scholar 

  44. He HB, Li B, Dong JP, Lei YY, Wang TL, Yu QW, Feng YQ, Sun YB (2013) Mesostructured nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) incorporated with dithiol organic anchors for multiple pollutants capturing in wastewater. ACS Appl Mater Interfaces 5:8058–8066

    PubMed  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by the Engineering Research Center of Development and Management for Low to Ultra-Low Permeability Oil & Gas Reservoirs in West China, Ministry of Education; Xi’an Shiyou University (KFJJ-XB-2019-3), the Special Scientific Research Plan Project of Shaanxi Provincial Department of Education (19JK0252), and the Science and Technology Plan Project of Shangluo (SK2019-81).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dazhong Ren or Jia Qu.

Ethics declarations

Competing of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Ren, D. & Qu, J. pH and temperature-responsive POSS-based poly(2-(dimethylamino)ethyl methacrylate) for highly efficient Cr(VI) adsorption. Colloid Polym Sci 298, 1515–1521 (2020). https://doi.org/10.1007/s00396-020-04737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04737-x

Keywords

Navigation