Skip to main content
Log in

Highly Dispersed MnOx Nanoparticles on Shape-Controlled SiO2 Spheres for Ecofriendly Selective Allylic Oxidation of Cyclohexene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Shape-controlled metal nanomaterials are considered as a unique class of catalysts because of their synergistic size- and shape-dependent catalytic properties. This work reports the synthesis of a novel size- and shape-controlled catalyst, consisting of highly dispersed MnOx nanoparticles (average particle size of 4.5 nm) on shape-controlled SiO2 nanospheres (250–300 nm) for selective cyclohexene oxidation using air as the oxidant under solvent- and base-free conditions. The MnOx/SiO2 catalyst exhibited an excellent cyclohexene conversion (~ 92%) with a high selectivity (~ 96%) to the allylic products (2-cyclohexene-ol and 2-cyclohexene-one) under mild conditions, outperforming various SiO2 supported CoOx, FeOx, and CuOx catalysts. The better performance of shape-controlled MnOx/SiO2 nanocatalyst is due to high redox nature of Mn, uniform dispersion of smaller sized MnOx nanoparticles, and synergetic interaction between MnOx and SiO2 spheres, as evidenced by XPS and TEM studies. Further, the MnOx/SiO2 catalyst could be reused at least 5 times for selective cyclohexene oxidation with a negligible loss in its catalytic performance, indicating the excellent stability of shape-controlled metal nanocatalysts in organic synthesis under economically viable and mild conditions.

Graphic Abstract

Shape-controlled MnOx/SiO2 nanocatalyst shows an excellent catalytic activity and a high selectivity to allylic products in the oxidation of cyclohexene under mild conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Yu J-W, Zhu W, Zhang Y-W (2016) Inorg Chem Front 3:9–25

    CAS  Google Scholar 

  2. Sudarsanam P, Zhong R, Bosch SV, Coman SM, Parvulescu VI, Sels BF (2018) Chem Soc Rev 47:8349–8402

    CAS  PubMed  Google Scholar 

  3. Li H, Bhadury PS, Song B, Yang S (2012) RSC Adv 2:12525–12551

    CAS  Google Scholar 

  4. Liu L, Corma A (2018) Chem Rev 118:4981–5079

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Chem Soc Rev 8:2366–2421

    Google Scholar 

  6. Cao S, Tao F, Tang Y, Li Y, Yu J (2016) Chem Soc Rev 45:4747–4765

    CAS  PubMed  Google Scholar 

  7. Jampaiah D, Velisoju VK, Venkataswamy P, Coyle VE, Nafady A, Reddy BM, Bhargava SK (2017) ACS Appl Mater Interfaces 9:32652–32666

    CAS  PubMed  Google Scholar 

  8. Laskar M, Skrabalak SE (2014) ACS Catal 4:1120–1128

    CAS  Google Scholar 

  9. Aneggi E, Wiater D, de Leitenburg C, Llorca J, Trovarelli A (2014) ACS Catal 4:172–181

    CAS  Google Scholar 

  10. Rao BG, Sudarsanam P, Mallesham B, Reddy BM (2016) RSC Adv 6:95252–95262

    CAS  Google Scholar 

  11. Hossain ST, Almesned Y, Zhang K, Zell ET, Bernard DT, Balaz S, Wang R (2018) App Surf Sci 428:598–608

    CAS  Google Scholar 

  12. Sharma RK, Sharma S, Dutta S, Zboril R, Gawande MB (2015) Green Chem 17:3207–3230

    CAS  Google Scholar 

  13. Chandra P, Doke DS, Umbarkar SB, Biradar AV (2014) J Mater Chem A 2:19060–19066

    CAS  Google Scholar 

  14. Sohn Y (2013) J Mol Catal A: Chem 379:59–67

    CAS  Google Scholar 

  15. Jiang H-J, Umegaki T, Akita T, Zhang XB, Haruta M, Xu Q (2010) Chem Eur J 16:3132

    CAS  PubMed  Google Scholar 

  16. Liu J, Wang F, Qi S, Gu Z, Wu G (2013) New J Chem 37:769–774

    CAS  Google Scholar 

  17. Yadav M, Singh AK, Tsumori N, Xu Q (2012) J Mater Chem 22:19146–19150

    CAS  Google Scholar 

  18. Gu D, Jia C-J, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Schüth F (2015) J Am Chem Soc 137:11407–11418

    CAS  PubMed  Google Scholar 

  19. Chen S-Y, Song W, Lin H-J, Wang S, Biswas S, Mollahosseini M, Kuo C-H, Gao P-X, Suib S (2016) ACS Appl Mater Interfaces 8:7834–7842

    CAS  PubMed  Google Scholar 

  20. Sudarsanam P, Hillary B, Mallesham B, Rao BG, Amin MH, Nafady A, Alsalme AM, Reddy BM, Bhargava SK (2016) Langmuir 32:2208–2215

    CAS  PubMed  Google Scholar 

  21. Gade VB, Rathi AK, Bhalekar SB, Tucek J, Tomanec O, Varma RS, Zboril R, Shelke SN, Gawande MB (2017) ACS Sustain Chem Eng 5:3314–3320

    CAS  Google Scholar 

  22. Cao Y, Yu H, Peng F, Wang H (2014) ACS Catal 4:1617–1625

    CAS  Google Scholar 

  23. Tong J, Wang W, Su L, Li Q, Liu F, Ma W, Lei Z, Bo L (2017) Catal Sci Technol 7:222–230

    CAS  Google Scholar 

  24. Yang D, Jiang T, Wu T, Zhang P, Han H, Han B (2016) Catal Sci Technol 6:193–200

    Google Scholar 

  25. Rao BG, Sudarsanam P, Nallappareddy PRG, Reddy MY, Rao TV, Reddy BM (2017) Catal Commun 10:57–61

    Google Scholar 

  26. Yang G, Huff MD, Du H, Zhang Z, Lei Y (2017) Catal Commun 99:43–48

    CAS  Google Scholar 

  27. Ovoshchnikov DS, Donoeva BG, Williamson BE, Golovko VB (2014) Catal Sci Technol 4:752–757

    CAS  Google Scholar 

  28. Donoeva BG, Ovoshchnikov DS, Golovko VB (2013) ACS Catal 3:2986–2991

    CAS  Google Scholar 

  29. Ran L, Zhao D, Gao X, Yin L (2015) CrystEngComm 17:4225–4237

    CAS  Google Scholar 

  30. Han R, Li W, Pan W, Zhu M, Zhou D, Fa-shen L (2014) Sci Rep 4:7493

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang X, Fan K, Zhu Y, Shen J, Jiang X, Zhao P, Li C (2012) J Mater Chem 22:17278–17283

    CAS  Google Scholar 

  32. Zhao B, Liu P, Zhuang H, Jiao Z, Fang T, Xu W, Lu B, Jiang Y (2013) J Mater Chem A 1:367–373

    CAS  Google Scholar 

  33. Wang J, Tang H, Ren H, Yu R, Qi J, Zhao D, Wang H (2014) Adv Sci 1:1400011–1400016

    Google Scholar 

  34. Zhu G, Zhu J, Jiang W, Zhang Z, Wang J, Zhu Y, Zhang Q (2017) Appl Catal B: Environ 209:729–737

    CAS  Google Scholar 

  35. Sudarsanam P, Mallesham B, Durgasri DN, Reddy BM (2014) RSC Adv 4:11322–11330

    CAS  Google Scholar 

  36. Cui X, Zhang Q, Tian M, Dong Z (2017) New J Chem 41:10165–10173

    CAS  Google Scholar 

  37. Rao BG, Jampaiah D, Venkataswamy P, Reddy BM (2016) Chemistry Select 1:6681–6691

    Google Scholar 

  38. Jha A, Jeong D-W, Lee Y-L, Nah IW, Roh H-S (2015) RSC Adv 5:103023–103029

    CAS  Google Scholar 

  39. Biswas S, Dutta B, Mullick K, Kuo C-H, Poyraz AS (2015) ACS Catal 5:4394–4403

    CAS  Google Scholar 

  40. Sudarsanam P, Hillary B, Amin MH, Hamid SBA, Bhargava SK (2016) Appl Catal B: Environ 185:213–224

    CAS  Google Scholar 

  41. Rao BG, Sudarsanam P, Nallappareddy PRG, Reddy MY, Rao TV, Reddy BM (2018) Chem Intermed 44:6151–6158

    CAS  Google Scholar 

  42. Zhu S, Gao X, Zhu Y, Fan W, Wang J, Li Y (2015) Catal Sci Technol 5:1169–1180

    CAS  Google Scholar 

  43. Wang Z, Qin Y, Pan F, Li Z, Zhang W, Wu F, Chen D, Wen W (2018) Ind Eng Chem Res 57:7374–7382

    CAS  Google Scholar 

  44. Reed C, Lee Y-K, Oyama ST (2006) J Phys Chem B 110:4207–4216

    CAS  PubMed  Google Scholar 

  45. Zhang P, Lu H, Zhou Y, Zhang L, Wu Z, Yang S, Shi H, Zhu Q (2015) Nat Commun 6:8446

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mingli F, Junmin L, Wenbo Z, Junliang W, Limin C, Bichun H, Daiqi YE (2014) J Rare Earths 32:153–158

    Google Scholar 

  47. Kim SC, Shim WG (2010) Appl Catal B: Environ 98:180–185

    CAS  Google Scholar 

  48. Ramana S, Rao BG, Venkataswamy P, Rangaswamy A (2016) J Mol Catal A Chem 415:113–121

    CAS  Google Scholar 

  49. Chen J, Chen M, Zhang B, Nie R, Huang A, Goh TW, Volkov A, Zhang Z, Ren Q, Huang W (2019) Green Chem 21:3629–3636

    CAS  Google Scholar 

  50. Zhou J, Cao S, Yang X, Chen Q, Luo X, Zheng M (2016) React Kinet Mech Cat 120:1–12

    Google Scholar 

  51. Zou G, Jing D, Zhong W, Zhao F, Mao L, Xu Q, Xiao J, Yin D (2016) RSC Adv 6:3729–3734

    CAS  Google Scholar 

  52. Habibia D, Faraji AR, Arshadi M, Veisi H, Gil A (2014) J Mol Catal A Chem 382:41–54

    Google Scholar 

  53. Tong J, Zhang Y, Li Z, Xia C (2006) J Mol Catal A Chem 249:47–52

    CAS  Google Scholar 

  54. Wei YN, Li H, Yue F, Xu Q, Wang JD, Zhang Y (2016) RSC Adv 6:107104–107108

    CAS  Google Scholar 

  55. El-Korso S, Bedrane S, Choukchou-Braham A, Bachir R (2015) RSC Adv 5:63382–63392

    CAS  Google Scholar 

Download references

Acknowledgements

BG thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for research fellowships. BMR thanks the DAE, Mumbai for the award of Dr Raja Ramanna Fellowship. The authors duly acknowledge the RMIT Microscopy and Microanalysis Facility (RMMF) for providing access to their instruments used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaram M. Reddy.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B.G., Sudarsanam, P., Rao, T.V. et al. Highly Dispersed MnOx Nanoparticles on Shape-Controlled SiO2 Spheres for Ecofriendly Selective Allylic Oxidation of Cyclohexene. Catal Lett 150, 3023–3035 (2020). https://doi.org/10.1007/s10562-020-03205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03205-z

Keywords

Navigation