Skip to main content
Log in

Ultrasound Assisted the Synthesis of 1,3-Dioxolane Derivatives from the Reaction of Epoxides or 1,2-Diols with Various Ketones Using Graphene Oxide Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The main objective of this study concerns the sonochemical synthesis of 1,3-dioxolane derivatives using graphene oxide catalyst by applying two methods. In the first method, we described the synthesis of 1,3-dioxolane by ring-opening of epoxides in the presence of ketones catalyzed by graphene oxide (GO) under ultrasonic irradiation. In the second sonochemical procedure, we described the synthesis of 1,3-dioxolane derivatives by the reaction of 1,2-diols with ketones using same GO catalyst. Mild reaction conditions, high yields, short reaction times, reusability of catalyst and easy isolation of the products make the developed methods very useful.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Wuts PG, Greene TW (2006) Greene's protective groups in organic synthesis, John Wiley & Sons

  2. Fraser-Reid B, Mootoo DR, Konradsson P, Udodong UE, Andrews CW, Ratcliffe AJ, Wu Z, Yu KL (1989) Novel carbohydrate transformations discovered en route to natural products. Pure Appl Chem 61(7):1243–1256

    CAS  Google Scholar 

  3. Robertson J, Stafford PM (2003) Selective hydroxyl protection and deprotection. Elsevier Science Ltd., Oxford, UK

    Google Scholar 

  4. Narayanasamy J, Pullagurla MR, Sharon A, Wang J, Schinazi RF, Chu CK (2007) Antivir Res 75:198–209

    CAS  PubMed  Google Scholar 

  5. Barbosa SL, Ottone M, Almeida MTD, Lage GL, Almeida MA, Nelson DL, dos Santos WT, Clososki GC, Lopes NP, Klein SI (2018) J Braz Chem Soc 29:1663–1671

    CAS  Google Scholar 

  6. Jin Y, Shi J, Zhang F, Zhong Y, Zhu W (2014) J Mol Catal A 383:167–171

    Google Scholar 

  7. Jiang JL, Xiu Z, Hua R (2008) Synth Commun 38:232–238

    CAS  Google Scholar 

  8. Vyvyan JR, Meyer JA, Meyer KD (2003) J Org Chem 68:9144–9147

    CAS  PubMed  Google Scholar 

  9. Concellón JM, Bernad PL, Suárez JR, García-Granda S, Díaz MR (2005) J Org Chem 70:9411–9416

    PubMed  Google Scholar 

  10. Torok DS, Figueroa JJ, Scott WJ (1993) J Org Chem 58:7274–7276

    CAS  Google Scholar 

  11. Hanzlik RP, Leinwetter M (1978) J Org Chem 43:438–440

    CAS  Google Scholar 

  12. Balamurugan R, Kothapalli RB, Thota GK (2011) Eur J Org Chem 2011:1557–1569

    Google Scholar 

  13. Krasik P, Bohemier-Bernard M, Yu Q (2005) Synlett 2005:0854–0856

    Google Scholar 

  14. Nagata T, Takai T, Yamada T, Imagawa K, Mukaiyama T (1994) Bull Chem Soc Jpn 67:2614–2616

    CAS  Google Scholar 

  15. Habibi M, Tangestaninejad S, Mirkhani V, Yadollahi B (2001) Catal Lett 75:205–207

    CAS  Google Scholar 

  16. Zeynizadeh B, Sadighnia L (2008) Phosphorus Sulfur Silicon Relat Elem 183:2274–2279

    CAS  Google Scholar 

  17. Yadav GD, Surve PS (2013) Ind Eng Chem Res 52:6129–6137

    CAS  Google Scholar 

  18. Chareonsiriwat L, Chavasiri W (2017) Synth Commun 47:257–267

    CAS  Google Scholar 

  19. Trikittiwong P, Sukpirom N, Shimazu S, Chavasiri W (2014) Catal Commun 54:104–107

    CAS  Google Scholar 

  20. Zatorski LW, Wierzchowski PT (1991) Catal Lett 10:211–213

    CAS  Google Scholar 

  21. Nethravathi B, Reddy KRK, Mahendra K (2010) Bull Chem Soc Ethiopia 24:295–298

    CAS  Google Scholar 

  22. Solladié-Cavallo A, Choucair E, Balaz M, Lupattelli P, Bonini C, Di Blasio N (2006) Eur J Org Chem 2006:3007–3011

    Google Scholar 

  23. Amrute AP, Sahoo S, Bordoloi A, Hwang YK, Hwang J-S, Halligudi SB (2009) Catal Commun 10:1404–1409

    CAS  Google Scholar 

  24. Kappe CO (2006) Chimia 60:308–312

    CAS  Google Scholar 

  25. Cravotto G, Cintas P (2006) Chem Soc Rev 35:180–196

    CAS  PubMed  Google Scholar 

  26. Benfatti F, Cardillo G, Gentilucci L, Tolomelli A, Monari M, Piccinelli F (2007) Adv Synth Catal 349:1256–1264

    CAS  Google Scholar 

  27. Spiro M (1990) Catal Today 7:167–178

    CAS  Google Scholar 

  28. Dreyer DR, Bielawski CW (2011) Chem Sci 2:1233–1240

    CAS  Google Scholar 

  29. Mirza-Aghayan M, Boukherroub R, Nemati M, Rahimifard M (2012) Tetrahedron Lett 53:2473–2475

    CAS  Google Scholar 

  30. Mirza-Aghayan M, Tavana MM, Boukherroub R (2014) Tetrahedron Lett 55:342–345

    CAS  Google Scholar 

  31. Mirza-Aghayan M, Kashef-Azar E, Boukherroub R (2012) Tetrahedron Lett 53:4962–4965

    CAS  Google Scholar 

  32. Kumar AV, Rao KR (2011) Tetrahedron Lett 52:5188–5191

    Google Scholar 

  33. Dhakshinamoorthy A, Alvaro M, Concepcion P, Fornes V, Garcia H (2012) Chem Commun 48:5443–5445

    CAS  Google Scholar 

  34. Mohammadi O, Golestanzadeh M, Abdouss M (2017) New J Chem 41:11471–11497

    CAS  Google Scholar 

  35. Mohammadi O, Golestanzadeh M (2018) Abdouss. ChemistrySelect 3:12131–12138

    CAS  Google Scholar 

  36. Golestanzadeh M, Naeimi H, Zahraie Z (2016) ChemistrySelect 1:6490–6498

    Google Scholar 

  37. Golestanzadeh M, Naeimi H (2019) ChemistrySelect 4:1909–1921

    CAS  Google Scholar 

  38. Mirza-Aghayan M, Boukherroub R, Rahimifard M (2014) Turk J Chem 38:859–864

    CAS  Google Scholar 

  39. Mirza-Aghayan M, Alizadeh M, Tavana MM, Boukherroub R (2014) Tetrahedron Lett 55:6694–6697

    CAS  Google Scholar 

  40. Mirza-Aghayan M, Alvandi F, Tavana MM, Boukherroub R (2017) Turk J Chem 41:70–79

    CAS  Google Scholar 

  41. Mirza-Aghayan M, Asadi F, Boukherroub R (2014) Monatsh Chem 145:1919–1924

    CAS  Google Scholar 

  42. Mirza-Aghayan M, Molaee Tavana M (2015) J Sulfur Chem 36:30–35

    CAS  Google Scholar 

  43. Sharghi H, Nasseri MA, Niknam K (2001) J Org Chem 66:7287–7293

    CAS  PubMed  Google Scholar 

  44. Taylor SK (2000) Tetrahedron 56:1149–1163

    CAS  Google Scholar 

  45. Moghadam M, Tangestaninejad S, Mirkhani V, Shaibani R (2004) Tetrahedron 60:6105–6111

    CAS  Google Scholar 

  46. He JY, Gao FX, Hua RM (2005) Chin J Chem 23:1275–1277

    CAS  Google Scholar 

  47. Peng T, Sun H, Peng T, Liu B, Zhao X (2017) Nanomaterials 7:292–303

    PubMed Central  Google Scholar 

  48. Grieser F, Choi P-K, Enomoto N, Harada H, Okitsu K, Yasui K (2015) Sonochemistry and the acoustic bubble, Elsevier

  49. Liu R, Gong T, Zhang K, Lee C (2017) Sci Rep 7:9761

    PubMed  PubMed Central  Google Scholar 

  50. Procopio A, Dalpozzo R, De Nino A, Maiuolo L, Nardi M, Russo B (2005) Adv Synth Catal 347:1447–1450

    CAS  Google Scholar 

  51. Zhou J, Wang Y, Guo X, Mao J, Zhang S (2014) Green Chem 16:4669–4679

    CAS  Google Scholar 

  52. Bucsi I, Meleg A, Molnár A, Bartók M (2001) J Mol Catal A 168:47–52

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mirza-Aghayan.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza-Aghayan, M., Mohammadi, M., Ahmadi, Z. et al. Ultrasound Assisted the Synthesis of 1,3-Dioxolane Derivatives from the Reaction of Epoxides or 1,2-Diols with Various Ketones Using Graphene Oxide Catalyst. Catal Lett 150, 2959–2969 (2020). https://doi.org/10.1007/s10562-020-03196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03196-x

Keywords

Navigation