Skip to main content
Log in

Simultaneous doping of higher ionic state metal and surface plasmon resonance-inducing element with ZnO: an effective approach to improve photocatalytic dye degradation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study aims to improve the photocatalytic activity of zinc oxide thin films by simultaneously doping with a higher oxidation state transition element and another element with localized plasmon resonance. To achieve this hypothesis, tungsten (W) and copper (Cu) were added to ZnO and the effects of W + Cu co-doping on the photocatalytic activity have been investigated. In addition, the influence of W + Cu co-doping on the structural, optical and surface morphological properties of ZnO has been studied and the obtained results have been correlated with the enhancement in the photocatalytic activity. The concentration of W was kept as 3 wt% and that of Cu was varied as 1, 3 and 5 wt%. The films were deposited on stainless steel mesh substrates. Antibacterial activity test was carried out for all the prepared film samples. The co-doped film with W + Cu doping concentrations 3 + 3 wt% exhibits superior photocatalytic and antibacterial activities when compared with other samples. The reasons and the mechanism behind this enhancement in the photocatalytic and antibacterial activities have been addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147, 1 (2009)

    Google Scholar 

  2. S. Ahadi, N.S. Moalej, S. Sheibani, Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sci 96, 105975 (2019)

    Google Scholar 

  3. C. Ravidhas, B. Anitha, R. Venkatesh, S. Esther Santhoshi Monica, D. Gopalakrishna, A. Moses Ezhil Raj, K. Ravichandran, Role of fluorine doping on luminescence centers and enhanced photocatalytic performance of nebulizer sprayed TiO2 films under visible Light. J Lumin 198, 272 (2018)

    Google Scholar 

  4. B. Malini, G. Allen Gnana Raj, C, N and S- doped TiO2-characterization and photocatalytic performance for Rose Bengal dye degradation under day light. J Environ Chem Eng (2018). https://doi.org/10.1016/j.jece.2018.09.002

    Article  Google Scholar 

  5. R.C. Pawar, D. Cho, C.S. Lee, Fabrication of nanocomposite photocatalysts from zinc oxide nanostructures and reduced graphene oxide. Curr Appl Phys 13, S50 (2013)

    ADS  Google Scholar 

  6. E. Alayu, Z. Yirgu, Advanced technologies for the treatment of wastewaters from agro-processing industries and cogeneration of by-products: a case of slaughterhouse, dairy and beverage industries. Int J Environ Sci Technol 15, 1581 (2018)

    Google Scholar 

  7. K. Piaskowski, R. Świderska-Dąbrowska, P.K. Zarzyck, Dye removal from water and wastewater using various physical, chemical, and biological processes. J AOAC Int 101(5), 1371 (2018)

    Google Scholar 

  8. M. Pirilä, M. Saouabe, S. Ojala, B. Rathnayake, F. Drault, A. Valtanen, M. Huuhtanen, R. Brahmi, R.L. Keiski, Photocatalytic degradation of organic pollutants in wastewater. Top Catal 58, 1085 (2015)

    Google Scholar 

  9. S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29(34), 342001 (2018)

    Google Scholar 

  10. K. Ravichandran, K. Kalpana, R. Uma, E. Sindhuja, K. Shanthaseelan, Cost-effective fabrication of ZnO/g-C3N4 composite film coated stainless steel meshes for visible light responsive photocatalysis. Mater Res Bull 99, 268 (2018)

    Google Scholar 

  11. V. Sharma, M. Prasad, P. Ilaiyaraja, C. Sudakar, S. Jadkar, Electrodeposition of highly porous ZnO nanostructures with hydrothermal amination for efficient photoelectrochemical activity. Int J Hydrogen Energy 44, 11459 (2019)

    Google Scholar 

  12. L. Mohapatra, K. Parida, A review of solar and visible light active oxo-bridged materials for energy and environment. Catal Sci Technol 7, 2153 (2017)

    Google Scholar 

  13. K.Q.B. Cheng, Yu Jiaguo, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd 727, 792 (2017)

    Google Scholar 

  14. M. Yu, Y. Ma, J. Liu, X. Li, S. Li, S. Liu, Sub-coherent growth of ZnO nanorod arrays on three-dimensional graphene framework as one-bulk high-performance photocatalyst. Appl Surf Sci 390, 266 (2016)

    ADS  Google Scholar 

  15. S. Bera, M. Pal, A. Naskar, S. Jana, Hierarchically structured ZnO-graphene hollow microspheres towards effective reusable adsorbent for organic pollutant via photodegradation process. J Alloys Compd 669, 177 (2016)

    Google Scholar 

  16. Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, Historical development and prospects of photocatalysts for pollutant removal in water. J Hazard Mater (2020). https://doi.org/10.1016/j.jhazmat.2020.122599

    Article  Google Scholar 

  17. K. Ravichandran, K. Shantha Seelan, P. Kavitha, S. Sriram, Influence of Cu + g-C3N4 incorporation on the photocatalytic dye decomposition of ZnO film coated on stainless steel wire meshes. J Mater Sci Mater Electron 30, 19703 (2019)

    Google Scholar 

  18. H. Song, H. Jiang, X. Liu, G. Meng, Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation. J Photochem Photobiol A Chem 181, 421 (2006)

    Google Scholar 

  19. M. Ahmada, E. Ahmeda, Z.L. Hong, X.L. Jiao, T. Abbas, N.R. Khalid, Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Appl Surf Sci 285, 702 (2013)

    ADS  Google Scholar 

  20. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater 34, 1946 (2012)

    ADS  Google Scholar 

  21. Y. Cheng, Y. Lin, Xu Jianping, J. He, T. Wang, Yu Guojun, D. Shao, W.-H. Wang, Lu Feng, L. Li, Du Xiwen, W. Wang, H. Liua, R. Zheng, Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu2O microspheres for degrading organic pollutants Appl. Surf Sci 366, 120 (2016)

    ADS  Google Scholar 

  22. S.V. Mohite, V.V. Ganbavle, K.Y. Rajpure, Photoelectrocatalytic activity of immobilized Yb doped WO3 photocatalyst for degradation of methyl orange dye. J Energ Chem (2017). https://doi.org/10.1016/j.jechem.2017.01.001

    Article  Google Scholar 

  23. K. Ravichandran, A. Manivasaham, K. Subha, A. Chandrabose, R. Mariappan, Cost-effective nebulizer sprayed ZnO thin films for enhanced ammonia gas sensing- effect of deposition temperature. Surf Interfaces 1–3, 13 (2016)

    Google Scholar 

  24. P. Jongnavakita, P. Amornpitoksuka, S. Suwanboonb, N. Ndiegec, Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Appl Surf Sci 258, 8192 (2012)

    ADS  Google Scholar 

  25. H.F. Moafi, M.A. Zanjanchi, A.F. Shojaie, Tungsten-doped ZnO nanocomposite: synthesis, characterization, and highly active photocatalyst toward dye photodegradation. Mater Chem Phy 139, 856 (2013)

    Google Scholar 

  26. V. Krishnakumar, S. Boobas, J. Jayaprakash, M. Rajaboopathi, B. Han, M. Louhi-Kultanen, Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J Mater Sci Mater Electron (2016). https://doi.org/10.1007/s10854-016-4720-1

    Article  Google Scholar 

  27. A.A. Shaha, M.A. Bhattib, A. Tahirae, A.D. Chandioa, I.A. Channaa, A.G. Sahitod, S. Ebrahime, M. Willandere, O. Nure, Z.H. Ibupotoc, Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram Int (2020). https://doi.org/10.1016/j.ceramint.2019.12.024

    Article  Google Scholar 

  28. W.W. Anku, S. Osei-BonsuOppong, S.K. Shukla, P.P. Govender, Comparative photocatalytic degradation of monoazo and diazo dyes under simulated visible light using Fe3+/C/S doped-TiO2 nanoparticles. Acta Chim Slov 63, 380 (2016)

    Google Scholar 

  29. L.V. Trandafilovi, D.J. Jovanovi, X. Zhang, S. Ptasinsk, M.D. Dramin, Enhanced photocatalytic degradation of methylene blue and methylorange by ZnO: Eu nanoparticles. Appl Catal. B 203, 740 (2017)

    Google Scholar 

  30. M. Li, J. Zhang, Y. Zhang, First-principles calculation of compensated (2N, W) codoping impacts on band gap engineering in anatase TiO2. Chem Phys Lett 527, 63 (2012)

    ADS  Google Scholar 

  31. G. Milazzo, S. Caroli, V.K. Sharma, Tables of standard electrode potentials (Wiley, Chichester, 1978)

    Google Scholar 

  32. K. Qi, B. Cheng, Yu Jiaguo, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd 727, 792 (2017)

    Google Scholar 

  33. N. Prasad, V.M.M. Saipavitra, H. Swaminathan, P. Thangaraj, M.R. Viswanathan, K. Balasubramanian, Microstress, strain, band gap tuning and photocatalytic properties of thermally annealed and Cu-doped ZnO nanoparticles. Appl Phys A 122, 590 (2016)

    ADS  Google Scholar 

  34. B. Krishnakumar, M. Swaminathan, Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions. SpectrochimicaActa Part A 81, 739 (2011)

    ADS  Google Scholar 

  35. S. Verma, B. Tirumala Rao, J. Jayabalan, S.K. Raid, D.M. Phase, A.K. Srivastava, R. Kaul, Studies on growth of Au cube-ZnO core-shell nanoparticles for photocatalytic degradation of methylene blue and methyl orange dyes in aqueous media and in presence of different scavengers. J Environ Chem Eng 7, 103209 (2019)

    Google Scholar 

  36. S. Snega, K. Ravichandran, M. Baneto, S. Vijayakumar, Simultaneous enhancement of transparent and antibacterial properties of ZnO films by suitable F doping. J Mater Sci Technol (2015). https://doi.org/10.1016/j.jmst.2015.03.001

    Article  Google Scholar 

  37. J. Pasquet, Y. Chevalier, E. Couval, D. Bouvier, G. Noizet, C. Morlière, M.A. Bolzinger, Antimicrobial activity of zinc oxide particles on five micro-organisms of the challenge tests related to their physicochemical properties. Int J Pharm 460, 92 (2014)

    Google Scholar 

  38. J.S. Tawale, K.K. Dey, R. Pasricha, K.N. Sood, A.K. Srivastava, Synthesis and characterization of ZnO nanostructures for optical and antibacterial applications. Thin Solid Films 519, 1244 (2010)

    ADS  Google Scholar 

  39. S. Rtimi, D.D. Dionysiou, S.C. Pillai, J. Kiwi, Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Appl Catal B (2019). https://doi.org/10.1016/j.apcatb.2018.07.025

    Article  Google Scholar 

  40. I.E. Medina-Ramírez, M.A. Arzate-Cardenas, A. Mojarro-Olmos, M.A. Romo-López, Synthesis, characterization, toxicological and antibacterial activity evaluation of Cu@ZnO nanocomposites. Ceram Int 45, 17476 (2019)

    Google Scholar 

  41. T.R. Lakshmeesha, M.K. Sateesh, B. Daruka Prasad, S.C. Sharma, D. Kavyashree, M. Chandrasekhar, H. Nagabhushana, Reactivity of crystalline ZnO superstructures against fungi and bacterial pathogens: synthesized using nerium oleander leaf extract. Cryst Growth Des 14, 4068 (2014)

    Google Scholar 

  42. M.H. Hsu, C.J. Chang, Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability. J Hazard Mater 278, 444 (2014)

    ADS  Google Scholar 

  43. F. Ghahramanifard, O. Fazlolahzadeh, A. Rouhollahi, Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure. Superlattices Microstruct (2018). https://doi.org/10.1016/j.spmi.2017.07.019

    Article  Google Scholar 

  44. T.K. Pathak, R.E. Kroona, H.C. Swart, Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion. Vacuum (2018). https://doi.org/10.1016/j.vacuum.2018.09.020

    Article  Google Scholar 

  45. N.F. Andrade Neto, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Study of the photocatalysis and increase of antimicrobial properties of Fe3+and Pb2+ co-doped ZnO nanoparticles obtained by microwave-assisted hydrothermal method. Mater Sci Semicond Process 93, 123 (2019)

    Google Scholar 

  46. K. Saravanakumar, K. Ravichandran, R. Chandramohan, S. Gobalakrishnan, Murthy Chavali, Investigation on simultaneous doping of Sn and F with ZnO nanopowders synthesized using a simple soft chemical route. Superlattices Microstruct 52, 528 (2012)

    ADS  Google Scholar 

  47. D.K. Dubey, D.N. Singh, S. Kumar, C. Nayak, P. Kumbhakar, S. NathJha, D.B.A.K. Ghosh, S. Chatterjee, Local structure and photocatalytic properties of sol–gel derived Mn–Li co-doped ZnO diluted magnetic semiconductor nanocrystals. RSC Adv 6, 22852 (2016)

    Google Scholar 

  48. A.L. Patterson, the Diffraction of X-rays by small crystalline particles. Phys Rev 56, 972 (1939)

    ADS  MATH  Google Scholar 

  49. S.M. Reda, M.A. Khairy, M.A. Mousa, Photocatalytic Activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process. Arabian J Chem (2020). https://doi.org/10.1016/j.arabjc.2017.02.002

    Article  Google Scholar 

  50. K.S. Ahn, T. Deutsch, Y. Yan, C.S. Jiang, C.L. Perkins, J. Turner, M. Al-Jassim, Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. J Appl Phys 102, 023517 (2007)

    ADS  Google Scholar 

  51. T. Raguram, K.S. Rajni, Synthesis and analysing the structural, optical, morphological, photocatalytic and magnetic properties of TiO2 and doped (Ni and Cu) TiO2 nanoparticles by sol–gel technique. J Appl Phy A 125, 288 (2019)

    ADS  Google Scholar 

  52. T. Saidani, M. Zaabat, M.S. Aida, B. Boudine, Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by solgel method. Superlattices Microstruct (2015). https://doi.org/10.1016/j.spmi.2015.09.029

    Article  Google Scholar 

  53. G. Muruganantham, K. Ravichandran, K. Saravanakumar, K. Swaminathan, N. Jabena Begum, B. Sakthivel, Effect of solvent volume on the physical properties of sprayed fluorine-doped zinc oxide thin films. Cryst Res Technol 47, 429 (2012)

    Google Scholar 

  54. K. Ravichandran, E. Sindhuja, Fabrication of cost effective g-C3N4+Ag activated ZnO photocatalyst in thin film form for enhanced visible light responsive dye degradation. Mater Chem Phy 221, 203 (2019)

    Google Scholar 

  55. J. Yu, Y. Hai, B. Cheng, Enhanced photocatalytic H2 production activity of TiO2 by Ni(OH)2 cluster modification. J Phys Chem C 115, 4953 (2011)

    Google Scholar 

  56. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy, 5th edn. (Perkin-Elmer Corporation, Eden Prairie, 1992)

    Google Scholar 

  57. Y.N. Tan, C.L. Wong, A.R. Mohamed, ISRN Mater Sci 18, 1 (2011)

    Google Scholar 

  58. E. Sindhuja, K. Ravichandran, K. Shanthaseelan, Cost-effective fabrication of (g-C3N4+Mo) added photostable ZnO thin films for enhanced visible light responsive photocatalytic dye degradation. Mater Res Bull 103, 299 (2018)

    Google Scholar 

  59. B.D. Ngoma, M. Chakera, N. Manyalad, B. Lob, M. Maazac, A.C. Beye, Temperature-dependent growth mode of W-doped ZnO nanostructures. Appl Surf Sci 257, 6226 (2011)

    ADS  Google Scholar 

  60. M. Musa, TezerFırat Can, S. Ismat Shah, Magneto-electrical properties of W doped ZnO thin films. J Magn Magn Mater 324, 4054 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Department of Science & Technology, Science and Engineering Research Board (DST-SERB), Government of India, through the major research project EMR/2016/003326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravichandran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shantha Seelan, K., Ravichandran, K., Kavitha, P. et al. Simultaneous doping of higher ionic state metal and surface plasmon resonance-inducing element with ZnO: an effective approach to improve photocatalytic dye degradation. Appl. Phys. A 126, 750 (2020). https://doi.org/10.1007/s00339-020-03938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03938-z

Keywords

Navigation