Skip to main content
Log in

Soft Dynamic Confinement of Membrane Proteins by Dehydrated Trehalose Matrices: High-Field EPR and Fast-Laser Studies

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In memory of the 85th birthday of Yakov S. Lebedev (Moscow), who died in 1996, we start this Review on soft-glass matrix effects in donor–acceptor complexes with an appreciation of his pioneering work on high-field EPR spectroscopy on tribochemically generated donor–acceptor complexes. The mechanochemical activation of polycrystalline mixtures of porphyrins (and other donors) and quinone acceptors was found to produce large concentrations of triplet donor molecules and donor–acceptor radical pairs with unusual stability. The Review is continued with reporting on W-band high-field EPR and fast-laser studies on disaccharide matrix effects on structure and dynamics of donor–acceptor protein complexes related to photosynthesis, including the non-oxygenic bacterial reaction center (RC) and the oxygenic RCs Photosystem I (PS I) and Photosystem II (PS II, preliminary results). Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, in particular trehalose and sucrose. Trehalose is most effective in protecting biostructures, both in vivo and in vitro. To clarify the molecular mechanisms of disaccharide bioprotection, structure and dynamics of sucrose and trehalose matrices at different controlled hydration levels were probed by perdeuterated nitroxide spin labels and native cofactor intermediates in their charge-separated states. Trehalose forms a homogeneous amorphous phase in which the hosted molecules are uniformly distributed. Notably, their rotational mobility at room temperature is dramatically impaired by the trehalose H-bonding network confinement to an extent that in normal protein–matrix systems is only observed at low temperatures around 150 K. From the experimental results, formation of an extended H-bonding network of trehalose with protein molecules is inferred, involving both bulk and local water molecules. The H-bond network extends homogeneously over the whole matrix integrating and immobilizing the hosted protein. Taken together, these observations suggest that in photosystems, such as bacterial RCs and PS I complexes, of different size and complexity regarding subunit composition and oligomeric organization, the molecular configuration of the cofactors involved in the primary processes of charge separation is not significantly distorted by incorporation into trehalose glass, even under extensive dehydration. By means of pulsed W-band high-field multiresonance EPR spectroscopies, such as ELDOR-detected NMR and ENDOR, in conjunction with using isotope labeled water (D2O and H217O), the biologically important issue of sensing and quantification of local water in proteins is addressed. The bacterial RC embedded into the trehalose glass matrix is used as model system. The two native radical cofactor ions of the primary electron donor and acceptor as well as an artificial nitroxide spin label site-specifically attached to the protein surface are studied in the experiments. The three paramagnetic reporter groups probe distinctly different local environments. They sense water molecules via their magnetic hyperfine and quadrupole interactions with either deuterons or 17O nuclei. It is shown that by using oxygen-17 labeled water, quantitative conclusions can be drawn differentiating between local and bulk water. It is concluded that dry trehalose operates as anhydrobiotic protein stabilizer by means of selective changes in the first solvation shell of the protein upon trehalose–matrix dehydration with subsequent changes in the hydrogen-bonding network. Such changes usually have an impact on the global function of a biological system. Finally, preliminary results of optical and W-band EPR experiments on the extremolytes ectoine and its derivative hydroxyectoine are reported; these compounds appear to share several stress-protecting properties with trehalose in terms of stabilizing protein matrices. For instance, they display remarkable stabilizing capabilities towards sensitive proteins and enzymes with respect to freeze-thawing, heat-treatment, and freeze-drying procedures. Moreover, hydroxyectoine is a good glass-forming compound and exhibits a remarkable bioprotective effect against desiccation and heat denaturation of functional protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Y.S. Lebedev, in Foundations of Modern EPR, ed. by G.R. Eaton, S.S. Eaton, K.M. Salikhov (World Scientific, Singapore, 1998), p. 731

    Google Scholar 

  2. O. Grinberg, L.J. Berliner (eds.), Very High Frequency (VHF) ESR/EPR (Springer, New York, 2004)

    Google Scholar 

  3. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and Their Model Systems (RSC Publishing, Cambridge, 2009)

    Google Scholar 

  4. S.M. Hsu, J. Zhang, Z. Yin, Tribol. Lett. 13, 131 (2002)

    Google Scholar 

  5. K.-P. Müller, Lehrbuch der Oberflächentechnik (Vieweg, Braunschweig, 1996)

    Google Scholar 

  6. M. Scherge, S. Gorb, Biological Micro- and Nanotribology, Nature’s Solutions (Springer, Berlin, 2001)

    Google Scholar 

  7. X. He, S.H. Kim, Langmuir 33, 2717 (2017)

    Google Scholar 

  8. Y. Wang, N. Yamada, J. Xu, J. Zhang, Q. Chen, Y. Ootani, Y. Higuchi, N. Ozawa, M.-I. De Barros Bouchet, J.M. Martin, S. Mori, K. Adachi, M. Kubo, Sci. Adv. 5, eaax9301 (2019)

  9. S.D. Chemerisov, O.Y. Grinberg, D.S. Tipikin, Y.S. Lebedev, H. Kurreck, K. Möbius, Chem. Phys. Lett. 218, 353 (1994)

    ADS  Google Scholar 

  10. D. Gust, T.A. Moore, Advan. Photochem. 16, 1 (1991)

    Google Scholar 

  11. J. von Gersdorff, M. Huber, H. Schubert, D. Niethammer, B. Kirste, M. Plato, K. Möbius, H. Kurreck, R. Eichberger, R. Kietzmann, F. Willig, Angew. Chem. Intern. Ed. Engl. 29, 670 (1990)

    Google Scholar 

  12. F. Lendzian, J. Schlüpmann, J. von Gersdorff, K. Möbius, H. Kurreck, Angew. Chem. Intern. Ed. Engl. 30, 1461 (1991)

    Google Scholar 

  13. M.R. Wasielewski, Chem. Rev. 92, 435 (1992)

    Google Scholar 

  14. F. Pöllinger, H. Heitele, M.E. Michel-Beyerle, C. Anders, M. Futscher, H.A. Staab, Chem. Phys. Lett. 198, 645 (1992)

    ADS  Google Scholar 

  15. K. Hasharoni, H. Levanon, J. von Gersdorff, H. Kurreck, K. Möbius, J. Chem. Phys. 98, 2916 (1993)

    ADS  Google Scholar 

  16. F. Lendzian, M. Huber, R.A. Isaacson, B. Endeward, M. Plato, B. Bönigk, K. Möbius, W. Lubitz, G. Feher, Biochim. Biophys. Acta 1183, 139 (1993)

    Google Scholar 

  17. T.F. Prisner, A. van der Est, R. Bittl, W. Lubitz, D. Stehlik, K. Möbius, Chem. Phys. 194, 361 (1995)

    Google Scholar 

  18. W. Lubitz, Phys. Chem. Chem. Phys. 4, 5539 (2002)

    Google Scholar 

  19. H. Kurreck, M. Huber, Angew. Chem. Intern. Ed. Engl. 34, 849 (1995)

    Google Scholar 

  20. D. Gust, T.A. Moore, A.L. Moore, Faraday Discuss. 155, 9 (2012)

    ADS  Google Scholar 

  21. T.A. Faunce, W. Lubitz, A.W. Rutherford, D. MacFarlane, G.F. Moore, P. Yang, D.G. Nocera, T.A. Moore, D.H. Gregory, S. Fukuzumi, K.B. Yoon, F.A. Armstrong, M.R. Wasielewski, S. Styring, Energy Environ. Sci. 6, 695 (2013)

    Google Scholar 

  22. D.R. Whang, D.H. Apaydin, Chem. Photo. Chem. 2, 148 (2018)

    Google Scholar 

  23. B. Zhang, L. Sun, Chem. Soc. Rev. 48, 2216 (2019)

    Google Scholar 

  24. G. Heinicke, Tribochemistry (Carl Hanser, Munich, 1984)

    Google Scholar 

  25. Y.S. Lebedev, in Modern Pulsed and Continuous-Wave Electron Spin Resonance, ed. by L. Kevan, M.K. Bowman (Wiley, New York, 1990), p. 365

    Google Scholar 

  26. N.M. Atherton, Electron Spin Resonance, Theory and Applications (Wiley, New York, 1973)

    Google Scholar 

  27. S.N. Dobryakov, G.G. Lazarev, M.V. Serdobov, Y.S. Lebedev, Mol. Phys. 36, 877 (1978)

    ADS  Google Scholar 

  28. C.A. Hutchison Jr., in The Triplet State, ed. by A.B. Zahlan (Cambridge University Press, Cambridge, 1967), p. 63

    Google Scholar 

  29. A.W. Hornig, J.S. Hyde, Mol. Phys. 6, 33 (1963)

    ADS  Google Scholar 

  30. R. Huber, M. Schwoerer, C. Bubeck, H. Six, Chem. Phys. Lett. 53, 35 (1978)

    ADS  Google Scholar 

  31. D.S. Tipikin, G.G. Lazarev, Y.S. Lebedev, Russian. J. Phys. Chem. 67, 159 (1993)

    Google Scholar 

  32. S.D. Chemerisov, G.D. Perekhodtsev, D.S. Tipikin, Ya.S. Lebedev, A.I. Prokofev, A.I. Aleksandrov, A.A. Dubinskii, K. Möbius, O.G. Poluektov, J. Schmidt, J. Chem. Soc., Faraday Trans. 92, 1959 (1996)

  33. D.S. Tipikin, Y.S. Lebedev, O.G. Poluektov, J. Schmidt, Chem. Phys. Lett. 215, 199 (1993)

    ADS  Google Scholar 

  34. A.I. Aleksandrov, A.I. Prokofev, I. Yu Metlenkova, N.N. Bubnov, D.S. Tipikin, S.D. Chemerisov, G.D. Perekhodtsev, Y.S. Lebedev, Russ. J. Phys. Chem. 69, 743 (1995)

    Google Scholar 

  35. A.I. Aleksandrov, A.I. Prokofev, I. Yu Metlenkova, N.N. Bubnov, D.S. Tipikin, S.D. Chemerisov, G.D. Perekhodtsev, Y.S. Lebedev, Russ. J. Phys. Chem. 70, 25 (1996)

    Google Scholar 

  36. C.P. Poole Jr., Electron Spin Resonance (Wiley, New York, 1983)

    Google Scholar 

  37. R.T. Weber, J.A.J.M. Disselhorst, L.J. Prevo, J. Schmidt, WTh Wenckebach, J. Magn. Reson. 81, 129 (1989)

    ADS  Google Scholar 

  38. O. Burghaus, M. Rohrer, T. Götzinger, M. Plato, K. Möbius, Meas. Sci. Technol. 3, 765 (1992)

    ADS  Google Scholar 

  39. K. Möbius, M. Plato, W. Lubitz, Phys. Rev. 87, 172 (1992)

    Google Scholar 

  40. L. Cordone, G. Cottone, S. Giuffrida, G. Palazzo, G. Venturoli, C. Viappiani, Biochim. Biophys. Acta, Proteins Proteomics 1749, 252 (2005)

  41. L. Cordone, G. Cottone, A. Cupane, A. Emanuele, S. Giuffrida, M. Levantino, Curr. Org. Chem. 19, 1684 (2015)

    Google Scholar 

  42. R.H. Austin, K.W. Beeson, L. Eisenstein, H. Frauenfelder, I.C. Gunsalus, Biochemistry 14, 5355 (1975)

    Google Scholar 

  43. R.H. Austin, A. Xie, L. van der Meer, B. Redlich, P.-A. Lindgård, H. Frauenfelder, D. Fu, Phys. Rev. Lett. 94, 128101 (2005)

    ADS  Google Scholar 

  44. D. Kleinfeld, M.Y. Okamura, G. Feher, Biochemistry 23, 5780 (1984)

    Google Scholar 

  45. B.H. McMahon, J.D. Muller, C.A. Wraight, G.U. Nienhaus, Biophys. J. 74, 2567 (1998)

    ADS  Google Scholar 

  46. P.R. Pokkuluri, P.D. Laible, A.E. Crawford, J.F. Mayfield, M.A. Yousef, S.L. Ginell, D.K. Hanson, M. Schiffer, FEBS Lett. 560, 171 (2004)

    Google Scholar 

  47. A. Savitsky, M. Malferrari, F. Francia, G. Venturoli, K. Möbius, J. Phys. Chem. B 114, 12729 (2010)

    Google Scholar 

  48. M. Malferrari, A. Savitsky, M.D. Mamedov, G.E. Milanovsky, W. Lubitz, K. Möbius, AYu Semenov, G. Venturoli, Biochim. Biophys. Acta 1857, 1440 (2016)

    Google Scholar 

  49. M. Malferrari, F. Francia, G. Venturoli, J. Phys. Chem. B 119, 13600 (2015)

    Google Scholar 

  50. S.J. Hagen, J. Hofrichter, W.A. Eaton, Science 269, 959 (1995)

    ADS  Google Scholar 

  51. S.J. Hagen, J. Hofrichter, W.A. Eaton, J. Phys. Chem. 100, 12008 (1996)

    Google Scholar 

  52. L. Cordone, P. Galajda, E. Vitrano, A. Gassmann, A. Ostermann, F. Parak, Eur. Biophys. J. 27, 173 (1998)

    Google Scholar 

  53. L. Cordone, M. Ferrand, E. Vitrano, G. Zaccai, Biophys. J. 76, 1043 (1999)

    Google Scholar 

  54. S.J. Clegg, Comp. Biochem. Physiol. B 128, 613 (2001)

    Google Scholar 

  55. L.M. Crowe, Comp. Biochem. Physiol. A 131, 505 (2002)

    Google Scholar 

  56. W.W. Parson, Biochim. Biophys. Acta 153, 248 (1968)

    Google Scholar 

  57. G. Feher, Photochem. Photobiol. 14, 373 (1971)

    Google Scholar 

  58. D. Stehlik, C.H. Bock, J. Petersen, J. Phys. Chem. 93, 1612 (1989)

    Google Scholar 

  59. A. Schnegg, M. Fuhs, M. Rohrer, W. Lubitz, T.F. Prisner, K. Möbius, J. Phys. Chem. B 106, 9454 (2002)

    Google Scholar 

  60. J.H. Freed, in Biological Magnetic Resonance, ed. by S.R. Eaton, G.R. Eaton, L.J. Berliner, vol. 24 (Kluwer, Boston, 2005) p. 239

  61. M. Malferrari, F. Francia, G. Venturoli, J. Phys. Chem. B 115, 14732 (2011)

    Google Scholar 

  62. J.J. Max, C. Chapados, J. Phys. Chem. 116, 4626 (2002)

    Google Scholar 

  63. S. Giuffrida, G. Cottone, L. Cordone, Phys. Chem. Chem. Phys. 19, 4251 (2017)

    Google Scholar 

  64. P.K. Verma, A. Kundu, M.S. Puretz, C. Dhoonmoon, O.S. Chegwidden, C.H. Londergan, M. Cho, J. Phys. Chem. B 122, 2587 (2018)

    Google Scholar 

  65. J. Ingram, D. Bartels, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377 (1996)

  66. P. Alpert, Integr. Comp. Biol. 45, 685 (2005)

    Google Scholar 

  67. A. Tunnacliffe, J. Lapinski, Phil. Trans. R. Soc. Lond. B 358, 1755 (2003)

    Google Scholar 

  68. J.H. Crowe, J.F. Carpenter, L.M. Crowe, Annu. Rev. Physiol. 60, 73 (1998)

    Google Scholar 

  69. M. Sakurai, T. Furuki, K.-I. Akao, D. Tanaka, Y. Nakahara, T. Kikawada, M. Watanabe, T. Okuda, Proc. Natl. Acad. Sci. USA 105, 5093 (2008)

    ADS  Google Scholar 

  70. S.C. Hand, M.A. Menze, M. Toner, L. Boswell, D. Moore, Annu. Rev. Physiol. 73, 115 (2011)

    Google Scholar 

  71. T.C. Boothby, H. Tapia, A.H. Brozena, S. Piszkiewicz, A.E. Smith, A. Giovannini, L. Rebecchi, G.J. Pielak, D. Koshland, B. Goldstein, Mol. Cell 65, 975 (2017)

    Google Scholar 

  72. A. Eroglu, M.J. Russo, R. Bieganski, A. Fowler, S. Cheley, H. Bayley, M. Toner, 4 Nat. Biotechnol. 18, 163 (2000)

    Google Scholar 

  73. S. Ohtake, Y.J. Wang, J. Pharm. Sci. 100, 2020 (2011)

    Google Scholar 

  74. D.S. Dimitrov, Methods Mol. Biol. 899, 1 (2012)

    Google Scholar 

  75. M.C. Manning, D.K. Chou, B.M. Murphy, R.W. Payne, D.S. Katayama, Pharm. Res. 27, 544 (2010)

    Google Scholar 

  76. M.A. Mensink, H.W. Frijlink, K. van der Voort Maarschalk, W.L.J. Hinrichs, Eur. J. Pharm. Biopharm. 114, 288 (2017)

  77. S. Giuffrida, G. Cottone, F. Librizzi, L. Cordone, J. Phys. Chem. B 107, 13211 (2003)

    Google Scholar 

  78. G. Caliskan, A. Kisliuk, A.M. Tsai, C.L. Soles, A.P. Sokolov, J. Phys. Chem. 118, 4230 (2003)

    Google Scholar 

  79. G. Caliskan, D. Mechtani, J.H. Roh, A. Kisliuk, A.P. Sokolov, S. Azzam, M.T. Cicerone, S. Lin-Gibson, I. Peral, J. Phys. Chem. 121, 1978 (2004)

    Google Scholar 

  80. A. Longo, S. Giuffrida, G. Cottone, L. Cordone, Phys. Chem. Chem. Phys. 12, 6852 (2010)

    Google Scholar 

  81. G. Bellavia, S. Giuffrida, G. Cottone, A. Cupane, L. Cordone, J. Phys. Chem. B. 115, 6340 (2011)

    Google Scholar 

  82. E.F. Semeraro, S. Giuffrida, G. Cottone, A. Cupane, J. Phys. Chem. B 121, 8731 (2017)

    Google Scholar 

  83. G. Cottone, L. Cordone, G. Ciccotti, Biophys. J. 80, 931 (2001)

    ADS  Google Scholar 

  84. G. Cottone, S. Giuffrida, G. Ciccotti, L. Cordone, Proteins: Struct., Funct., Bioinf. 59, 291 (2005)

  85. A. Lerbret, F. Affouard, A. Hedoux, S. Krenzlin, J. Siepmann, M.-C. Bellissent-Funel, M. Descamps, J. Phys. Chem. B 116, 11103 (2012)

    Google Scholar 

  86. H. Frauenfelder, B.H. McMahon, Ann. Phys. (Leipzig) 9, 655 (2000)

    ADS  Google Scholar 

  87. J.G. Sampedro, S. Uribe, Mol. Cell. Biochem. 256, 319 (2004)

    Google Scholar 

  88. J.L. Green, C.A. Angell, J. Phys. Chem. 93, 2880 (1989)

    Google Scholar 

  89. C. Schebor, M.P. Buera, J. Chirife, J. Food. Eng. 30, 269 (1996)

    Google Scholar 

  90. B.S. Chang, R.M. Beauvais, A. Dong, J.F. Carpenter, Arch. Biochem. Biophys. 331, 249 (1996)

    Google Scholar 

  91. W.Q. Sun, P. Davidson, Biochim. Biophys. Acta 1425, 235 (1998)

    Google Scholar 

  92. M.T. Cicerone, J.F. Douglas, Soft Matter 8, 2983 (2012)

    ADS  Google Scholar 

  93. J. Buitink, C. Walters-Vertucci, F.A. Hoekstra, O. Leprince, Plant Physiol. 111, 235 (1996)

    Google Scholar 

  94. J.F. Carpenter, J.H. Crowe, Biochemistry 28, 3916 (1989)

    Google Scholar 

  95. S.N. Timasheff, Biochemistry 41, 13473 (2002)

    Google Scholar 

  96. T. Arakawa, S.N. Timasheff, Biochemistry 21, 6536 (1982)

    Google Scholar 

  97. P.S. Belton, A.M. Gill, Biopolymers 34, 957 (1994)

    Google Scholar 

  98. G. Cottone, G. Ciccotti, L. Cordone, J. Chem. Phys. 117, 9862 (2002)

    ADS  Google Scholar 

  99. C. Olsson, S. Genheden, V. García Sakai, J. Swenson, J. Phys. Chem. B 123, 3679 (2019)

  100. S.N. Timasheff, Biochemistry 31, 9857 (1992)

    Google Scholar 

  101. T. Arakawa, S.N. Timasheff, Biophys. J. 47, 411 (1985)

    ADS  Google Scholar 

  102. F. Francia, M. Dezi, A. Mallardi, G. Palazzo, L. Cordone, G. Venturoli, J. Am. Chem. Soc. 130, 10240 (2008)

    Google Scholar 

  103. G. Cottone, S. Giuffrida, S. Bettati, S. Bruno, B. Campanini, M. Marchetti, S. Abbruzzetti, C. Viappiani, A. Cupane, A. Mozzarelli, L. Ronda, Catalists 9, 1024 (2019)

    Google Scholar 

  104. K.D. Rector, J. Jiang, M.A. Berg, M.D. Fayer, J. Phys. Chem. B. 105, 1081 (2001)

    Google Scholar 

  105. M. Tarek, D.J. Tobias, Phys. Rev. Lett. 88, 138101 (2002)

    ADS  Google Scholar 

  106. K. Wood, F.-X. Gallat, R. Otten, A.J. van Heel, M. Lethier, L. van Eijck, M. Moulin, M. Haertlein, M. Weik, F.A.A. Mulder, Angew. Chem. Int. Ed. 52, 665 (2013)

    Google Scholar 

  107. H. Frauenfelder, B.H. McMahon, Proc. Natl. Acad. Sci. USA 95, 4795 (1998)

    ADS  Google Scholar 

  108. F. Librizzi, C. Viappiani, S. Abbruzzetti, L. Cordone, J. Chem. Phys. 116, 1193 (2002)

    ADS  Google Scholar 

  109. A.M. Massari, I.J. Finkelstein, B.L. McClain, A. Goj, X. Wen, K.L. Bren, R.F. Loring, M.D. Faye, J. Am. Chem. Soc. 127, 14279 (2005)

    Google Scholar 

  110. M. Malferrari, A. Savitsky, W. Lubitz, K. Möbius, G. Venturoli, J. Phys. Chem. Lett. 7, 4871 (2016)

    Google Scholar 

  111. G. Palazzo, A. Mallardi, A. Hochkoeppler, L. Cordone, G. Venturoli, Biophys. J. 82, 558 (2002)

    Google Scholar 

  112. F. Francia, G. Palazzo, A. Mallardi, L. Cordone, G. Venturoli, Biophys. J. 85, 2760 (2003)

    Google Scholar 

  113. F. Francia, G. Palazzo, A. Mallardi, L. Cordone, G. Venturoli, Biochim. Biophys. Acta Bioenerg. 1658, 50 (2004)

    Google Scholar 

  114. P. Lunkenheimer, A. Loidl, Chem. Phys. 284, 205 (2002)

    Google Scholar 

  115. M. Orrit, Angew. Chem. Inter. Ed. 52, 163 (2013)

    Google Scholar 

  116. G.P. Johari, M. Goldstein, J. Chem. Phys. 55, 4245 (1971)

    ADS  Google Scholar 

  117. P. Allegrini, J.F. Douglas, S.C. Glotzer, Phys. Rev. E. 60, 5714 (1999)

    ADS  Google Scholar 

  118. K. Kaminski, E. Kaminska, K.L. Ngai, M. Paluch, P. Wlodarczyk, A. Kasprzycka, W. Szeja, J. Phys. Chem. B 113, 10088 (2009)

    Google Scholar 

  119. H. Frauenfelder, G. Chen, J. Berendzen, P.W. Fenimore, H. Jansson, B.H. McMahon, I.R. Stroe, J. Swenson, R.D. Young, Proc. Natl. Acad. Sci. USA 106, 5129 (2009)

    ADS  Google Scholar 

  120. M.D. Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000)

    ADS  Google Scholar 

  121. R.A. Riggleman, J.F. Douglas, J.J. de Pablo, Soft Matter 6, 292 (2010)

    ADS  Google Scholar 

  122. L. Sloten, Biochim. Biophys. Acta 275, 208 (1972)

    Google Scholar 

  123. J.H. Freed, in Very High Frequency (VHF) ESR/EPR, ed. by O. Grinberg, L.J. Berliner (Springer, New York, 2004), p. 19

    Google Scholar 

  124. K. Möbius, W. Lubitz, N. Cox, A. Savitsky, Magnetochemistry 4, 50 (2018)

    Google Scholar 

  125. T.F. Prisner, M. Rohrer, K. Möbius, Appl. Magn. Reson. 7, 167 (1994)

    Google Scholar 

  126. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, M. Fuchs, Phys. Chem. Chem. Phys. 7, 19 (2005)

    Google Scholar 

  127. A. Savitsky, J. Niklas, J.H. Golbeck, K. Möbius, W. Lubitz, Phys. Chem B. 117, 11184 (2013)

    Google Scholar 

  128. A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242, 203 (2014)

    ADS  Google Scholar 

  129. K. Möbius, W. Lubitz, A. Savitsky, Prog. Nucl. Magn. Res. Spec. 75, 1 (2013)

    Google Scholar 

  130. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)

    Google Scholar 

  131. D. Goldfarb, S. Stoll (eds.), EPR Spectroscopy: Fundamentals and Methods (Wiley, New York, 2018)

    Google Scholar 

  132. C. Kirmaier, D. Holten, Photosynth. Res. 13, 225 (1987)

    Google Scholar 

  133. G. Feher, J.P. Allen, M.Y. Okamura, D.C. Rees, Nature 339, 111 (1989)

    ADS  Google Scholar 

  134. J.C. Williams, R.G. Alden, H.A. Murchison, J.M. Peloquin, N.W. Woodbury, J.P. Allen, Biochemistry 31, 11029 (1992)

    Google Scholar 

  135. C.-K. Tang, J.A. Williams, A.K.W. Taguchi, P. James, J.P. Allen, N.W. Woodbury, Biochemistry 38, 8794 (1999)

    Google Scholar 

  136. M.Y. Okamura, M.L. Paddock, M.S. Graige, G. Feher, Biochim. Biophys. Acta 1458, 148 (2000)

    Google Scholar 

  137. H. Frauenfelder, B.H. McMahon, P.W. Fenimore, Proc. Natl. Acad. Sci. USA 100, 8615 (2003)

    ADS  Google Scholar 

  138. H. Wang, S. Lin, J.P. Allen, J.C. Williams, S. Blankert, C. Laser, N.W. Woodbury, Science 316, 747 (2007)

    ADS  Google Scholar 

  139. G. Katona, A. Snijder, P. Gourdon, U. Andréasson, Ö. Hansson, L.-E. Andréasson, R. Neutze, Nat. Struct. Mol. Biol. 12, 630 (2005)

    Google Scholar 

  140. M.H.B. Stowell, T.M. McPhillips, D.C. Rees, S.M. Soltis, E. Abresch, G. Feher, Science 276, 812 (1997)

    Google Scholar 

  141. Q. Xu, M.R. Gunner, Biochemistry 40, 3232 (2001)

    Google Scholar 

  142. Q. Xu, M.R. Gunner, Biochemistry 41, 2694 (2002)

    Google Scholar 

  143. Q. Xu, L. Baciou, P. Sebban, M.R. Gunner, Biochemistry 41, 10021 (2002)

    Google Scholar 

  144. J. Breton, C. Boullais, C. Mioskowski, P. Sebban, L. Baciou, E. Nabedryk, Biochemistry 41, 12921 (2002)

    Google Scholar 

  145. J. Breton, Biochemistry 43, 3318 (2004)

    Google Scholar 

  146. C.R.D. Lancaster, Biochim. Biophys. Acta 1365, 143 (1998)

    Google Scholar 

  147. A. Kuglstatter, U. Ermler, H. Michel, L. Baciou, G. Fritzsch, Biochemistry 40, 4253 (2001)

    Google Scholar 

  148. U. Zachariae, C.R.D. Lancaster, Biochim. Biophys. Acta 1505, 280 (2001)

    Google Scholar 

  149. S.E. Walden, R.A. Wheeler, J. Phys. Chem. B 106, 3001 (2002)

    Google Scholar 

  150. J.M. Kriegl, G.U. Nienhaus, Proc. Natl. Acad. Sci. USA 101, 123 (2004)

    ADS  Google Scholar 

  151. J.M. Kriegl, F.K. Forster, G.U. Nienhaus, Biophys. J. 85, 1851 (2003)

    Google Scholar 

  152. M. Malferrari, A. Savitsky, F. Francia, K. Möbius, G. Venturoli, in preparation (2020)

  153. R.A. Marcus, N. Sutin, Biochim. Biophys. Acta Rev. Bioenerget. 811, 265 (1985)

    Google Scholar 

  154. C.C. Moser, J.M. Keske, K. Warncke, R.S. Farid, P.L. Dutton, Nature 355, 796 (1992)

    ADS  Google Scholar 

  155. S.S. Deshmukh, J.C. Williams, J.P. Allen, L. Kalman, Biochemistry 50, 340 (2011)

    Google Scholar 

  156. S.S. Deshmukh, J.C. Williams, J.P. Allen, L. Kalman, Biochemistry 50, 3321 (2011)

    Google Scholar 

  157. E. Nabedryk, K.A. Bagley, D.L. Thibodeau, M. Bauscher, W. Mäntele, J. Breton, FEBS Lett. 266, 59 (1990)

    Google Scholar 

  158. T. Iwata, M.L. Paddock, M.Y. Okamura, H. Kandori, Biochemistry 48, 1220 (2009)

    Google Scholar 

  159. M. Malferrari, A. Mezzetti, F. Francia, G. Venturoli, Biochim. Biophys. Acta Bioenerg. 1827, 328 (2013)

    Google Scholar 

  160. E.C. López-Díez, S. Bone, Biochim. Biophys. Acta 1673, 139 (2004)

    Google Scholar 

  161. B. Roser, Biopharm. 4, 47 (1991)

    Google Scholar 

  162. C. Colaco, S. Sen, M. Thangavelu, S. Pinder, B. Roser, Biotechnology 10, 1007 (1992)

    Google Scholar 

  163. M. Uritani, M. Takai, K. Yoshinaga, J. Biochem. 117, 774 (1995)

    Google Scholar 

  164. S. Giuffrida, G. Cottone, L. Cordone, J. Phys. Chem. B 108, 15415 (2004)

    Google Scholar 

  165. S. Giuffrida, G. Cottone, L. Cordone, Biophys. J. 91, 968 (2006)

    ADS  Google Scholar 

  166. M. Malferrari, A. Nalepa, G. Venturoli, F. Francia, W. Lubitz, K. Möbius, A. Savitsky, Phys. Chem. Chem. Phys. 16, 9831 (2014)

    Google Scholar 

  167. P. Gast, R.T.L. Herbonnet, J. Klare, A. Nalepa, C. Rickert, D. Stellinga, L. Urban, K. Möbius, A. Savitsky, H.J. Steinhoff, E.J.J. Groenen, Phys. Chem. Chem. Phys.16, 15910 (2014)

  168. C.J. Roberts, P.G. Debenedetti, J. Phys. Chem. B 103, 7308 (1999)

    Google Scholar 

  169. P.B. Conrad, J.J. de Pablo, J. Phys. Chem. A 103, 4049 (1999)

    Google Scholar 

  170. A. Lerbret, P. Bordat, F. Affouard, M. Descamps, F. Migliardo, J. Phys. Chem. B 109, 11046 (2005)

    Google Scholar 

  171. G.A. Jeffrey, S. Takagi, Acc. Chem. Res. 11, 264 (1978)

    Google Scholar 

  172. D.B. Davies, J.C. Christofides, Carbohydr. Res. 163, 269 (1987)

    Google Scholar 

  173. N.C. Ekdawi-Sever, P.B. Conrad, J.J. de Pablo, J. Phys. Chem. A 105, 734 (2001)

    Google Scholar 

  174. S. Magazu, V. Villari, P. Migliardo, G. Maisano, M.T.F. Telling, J. Phys. Chem. B 105, 1851 (2001)

    Google Scholar 

  175. U. Heugen, G. Schwaab, E. Bruendermann, M. Heyden, X. Yu, D.M. Leitner, M. Havenith, Proc. Natl. Acad. Sci. USA 103, 12301 (2006)

    ADS  Google Scholar 

  176. F. Affouard, P. Bordat, M. Descamps, A. Lerbret, S. Magazu, F. Migliardo, A.J. Ramirez-Cuesta, M.F.T. Telling, Chem. Phys. 317, 258 (2005)

    Google Scholar 

  177. M.V. Fedorov, J.M. Goodman, D. Nerukh, S. Schumm, Phys. Chem. Chem. Phys. 13, 2294 (2011)

    Google Scholar 

  178. J.H. Golbeck (ed.), Photosystem I. The light-Driven Plastocyanin: Ferredoxin Oxidoreductase (Springer, Dordrecht, 2006)

    Google Scholar 

  179. P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauß, Nature 411, 909 (2001)

    ADS  Google Scholar 

  180. K. Brettel, W. Leibl, Biochim. Biophys. Acta 1507, 100 (2001)

    Google Scholar 

  181. M. Mamedov, Govindjee, V. Nadtochenko, A. Semenov, Photosynth. Res. 125, 51 (2015)

  182. M. Guergova-Kuras, B. Boudreaux, A. Joliot, P. Joliot, K. Redding, Proc. Natl. Acad. Sci. USA 98, 4437 (2001)

    ADS  Google Scholar 

  183. N. Srinivasan, J.H. Golbeck, Biochim. Biophys. Acta 1787, 1057 (2009)

    Google Scholar 

  184. J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, Nature 318, 618 (1985)

    ADS  Google Scholar 

  185. H. Komiya, T.O. Yeates, D.C. Rees, J.P. Allen, G. Feher, Proc. Natl. Acad. Sci. USA 85, 9012 (1988)

    ADS  Google Scholar 

  186. I.V. Shelaev, F.E. Gostev, M.D. Mamedov, O.M. Sarkisov, V.A. Nadtochenko, V.A. Shuvalov, A.Y. Semenov, Biochim. Biophys. Acta 1797, 1410 (2010)

    Google Scholar 

  187. K. Brettel, Biochim. Biophys. Acta 1318, 322 (1997)

    Google Scholar 

  188. P. Setif, H. Bottin, Biochemistry 28, 2689 (1989)

    Google Scholar 

  189. I.R. Vassiliev, Y.S. Jung, M.D. Mamedov, AYu Semenov, J.H. Golbeck, Biophys. J. 72, 301 (1997)

    ADS  Google Scholar 

  190. K. Brettel, J.H. Golbeck, Photosynth. Res. 45, 183 (1995)

    Google Scholar 

  191. D.A. Cherepanov, G.E. Milanovsky, O.A. Gopta, R. Balasubramanian, D.A. Bryant, A.Y. Semenov, J.H. Golbeck, J. Phys. Chem. B 122, 7943 (2018)

    Google Scholar 

  192. P. Sétif, P. Mathis, T. Vänngård, Biochim. Biophys. Acta 767, 404 (1984)

    Google Scholar 

  193. E. Schlodder, K. Falkenberg, M. Gergeleit, K. Brettel, Biochemistry 37, 9466 (1998)

    Google Scholar 

  194. G. Milanovsky, O. Gopta, A. Petrova, M. Mamedov, M. Gorka, D. Cherepanov, J. Golbeck, A. Semenov, Biochim. Biophys. Acta Bioenerget. 1860, 601 (2019)

    Google Scholar 

  195. I. Shelaev, M. Gorka, A. Savitsky, V. Kurashov, M. Mamedov, F. Gostev, K. Möbius, V. Nadtochenko, J. Golbeck, A. Semenov, Zeitschrift für Physikalische Chemie (J. Phys. Chem.) 231, 325 (2017)

    Google Scholar 

  196. V. Kurashov, M. Gorka, G.E. Milanovsky, T.W. Johnson, D.A. Cherepanov, AYu Semenov, J.H. Golbeck, Biochim. Biophys. Acta Bioenerget. 1859, 1288 (2018)

    Google Scholar 

  197. P. Fromme, I. Grotjohann, in Photosystem I. The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase, ed. by J. Golbeck (Springer, Dordrecht, 2006), p. 47

  198. V.P. Shinkarev, in Photosystem I. The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, ed. by J. Golbeck (Springer, Dordrecht, 2006), p. 612

  199. S. Santabarbara, R. Jennings, G. Zucchelli, in The Biophysics of Photosynthesis, ed. by J. Golbeck, A. van der Est (Springer, New York, 2014) p. 241

  200. D.H. Rasmussen, A.P. MacKenzie, J. Phys. Chem. 75, 967 (1971)

    Google Scholar 

  201. J.G. Constantin, M. Schneider, H.R. Corti, J. Phys. Chem. B 120, 5047 (2016)

    Google Scholar 

  202. P.J. Hore, in Advanced EPR. Applications in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989), p.405

  203. M. Kanduč, A. Schlaich, E. Schneck, R.R. Netz, Langmuir 32, 8767 (2016)

    Google Scholar 

  204. C. Olsson, H. Jansson, J. Swenson, J. Phys. Chem. B 120, 4723 (2016)

    Google Scholar 

  205. A. Nalepa, M. Malferrari, W. Lubitz, G. Venturoli, K. Möbius, A. Savitsky, Phys. Chem. Chem. Phys. 19, 28388 (2017)

    Google Scholar 

  206. J. Koepke, E.M. Krammer, A.R. Klingen, P. Sebban, G.M. Ullmann, G. Fritzsch, J. Mol. Biol. 371, 396 (2007)

    Google Scholar 

  207. D.E. Giangiacomo, M.R. Gunner, L.P. Dutton, in Progress in Photosynthesis Research, ed. by J. Biggins (Springer, Dordrecht, 1987), p. 409

    Google Scholar 

  208. J.A. Rard, J. Solution Chem. 48, 271 (2019)

    Google Scholar 

  209. M. Malferrari, G. Venturoli, F. Francia, A. Mezzetti, Spectrosc. Int. J. 27, 337 (2012)

    Google Scholar 

  210. L.B. Rockland, Anal. Chem. 32, 1375 (1960)

    Google Scholar 

  211. S. Khodadadi, A.P. Sokolov, Biochim. Biophys. Acta 1861, 3546 (2017)

    Google Scholar 

  212. K. Henzler-Wildman, D. Kern, Nature 450, 964 (2007)

    ADS  Google Scholar 

  213. S. Khodadadi, A.P. Sokolov, Soft Matter 11, 4984 (2015)

    ADS  Google Scholar 

  214. R.G. Bryant, C. R. Phys. 11, 128 (2010)

    ADS  Google Scholar 

  215. B. Halle, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359, 1207 (2004)

  216. N.V. Nucci, M.S. Pometun, A.J. Wand, J. Am. Chem. Soc. 133, 12326 (2011)

    Google Scholar 

  217. N.V. Nucci, M.S. Pometun, A.J. Wand, Nat. Struct. Mol. Biol. 18, 245 (2011)

    Google Scholar 

  218. K. Yokoyama, T. Kamei, H. Minami, M. Suzuki, J. Phys. Chem. B 105, 12622 (2001)

    Google Scholar 

  219. V.C. Nibali, M. Havenith, J. Am. Chem. Soc. 136, 12800 (2014)

    Google Scholar 

  220. A.I. McIntosh, B. Yang, S.M. Goldup, M. Watkinson, R.S. Donnan, Chem. Soc. Rev. 41, 2072 (2012)

    Google Scholar 

  221. A.C. Fogarty, D. Laage, J. Phys. Chem. B 118, 7715 (2014)

    Google Scholar 

  222. J.T. King, K.J. Kubarych, J. Am. Chem. Soc. 134, 18705 (2012)

    Google Scholar 

  223. D. Laage, G. Stirnemann, F. Sterpone, R. Rey, J.T. Hynes, Ann. Rev. Phys. Chem. 62, 395 (2011)

    ADS  Google Scholar 

  224. D.M. Leitner, M. Gruebele, M. Havenith, Hfsp J. 2, 314 (2008)

    Google Scholar 

  225. H.J. Bakker, J.L. Skinner, Chem. Rev. 110, 1498 (2010)

    Google Scholar 

  226. H. Frauenfelder, S.G. Sligar, P.G. Wolynes, Science 254, 1598 (1991)

    ADS  Google Scholar 

  227. H. Frauenfelder, P.W. Fenimore, G. Chen, B.H. McMahon, Proc. Nat. Acad. Sci. USA 103, 15469 (2006)

    ADS  Google Scholar 

  228. F. Sussich, C. Skopec, J. Brady, A. Cesaro, Carbohydr. Res. 334, 165 (2001)

    Google Scholar 

  229. W.L. Hubbell, in Membrane Protein Structure: Experimental Approaches, ed. by S.H. White (Oxford University Press, London, 1994), p. 224

    Google Scholar 

  230. P. Gajula, I.V. Borovykh, C. Beier, T. Shkuropatova, P. Gast, H.J. Steinhoff, Appl. Magn. Reson. 31, 167 (2007)

    Google Scholar 

  231. P. Ball, Chem. Rev. 108, 74 (2008)

    Google Scholar 

  232. P. Ball, Proc. Natl. Acad. Sci. USA 114, 13327 (2017)

    Google Scholar 

  233. A. Losi, W. Gärtner, Annu. Rev. Plant Biol. 63, 49–72 (2012)

    Google Scholar 

  234. V.P. Shinkarev, C.A. Wraight, Proc. Natl. Acad. Sci. USA 90, 1834 (1993)

    ADS  Google Scholar 

  235. F. Müh, C. Glöckner, J. Hellmich, A. Zouni, Biochim. Biophys. Acta 1817, 44 (2012)

    Google Scholar 

  236. J-R. Shen, Annu. Rev. Plant Biol. 66, 23 (2015)

  237. F. Rappaport, B.A. Diner, Coord. Chem. Rev. 252, 259 (2008)

    Google Scholar 

  238. D.J. Vinyard, G.W. Brudvig, Annu. Rev. Phys. Chem. 68, 101 (2017)

    ADS  Google Scholar 

  239. N. Cox, D.A. Pantazis, W. Lubitz, Annu. Rev. Biochem. 89, 795 (2020)

    Google Scholar 

  240. Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 473, 55 (2011)

    ADS  Google Scholar 

  241. W. Lubitz, M. Chrysina, N. Cox, Photosyn. Res. 142, 105 (2019)

    Google Scholar 

  242. L. Rapatskiy, N. Cox, A. Savitsky, W.M. Ames, J. Sander, M.M. Nowaczyk, M. Roegner, A. Boussac, F. Neese, J. Messinger, W. Lubitz, J. Am. Chem. Soc. 134, 16619 (2012)

    Google Scholar 

  243. K. Brettel, E. Schlodder, H.T. Witt, Biochim. Biophys. Acta 766, 403 (1984)

    Google Scholar 

  244. M. Karge, K.D. Irrgang, S. Sellin, R. Feinäugle, B. Liu, H.J. Eckert, H.J. Eichler, G. Renger, FEBS Lett. 378, 140 (1996)

    Google Scholar 

  245. C. Tommos, G.T. Babcock, Biochim. Biophys. Acta 1458, 199 (2000)

    Google Scholar 

  246. H. Conjeaud, P. Mathis, Biochim. Biophys. Acta 590, 353 (1980)

    Google Scholar 

  247. E. Schlodder, B. Meyer, Biochim. Biophys. Acta 890, 23 (1987)

    Google Scholar 

  248. E. Schlodder, M. Çetin, F. Lendzian, Biochim. Biophys. Acta 1847, 1283 (2015)

    Google Scholar 

  249. M.J. Schilstra, F. Rappaport, J.H.A. Nugent, C.J. Barnett, D.R. Klug, Biochemistry 37, 3974 (1998)

    Google Scholar 

  250. F. Rappaport, J. Lavergne, Biochim. Biophys. Acta 1503, 246 (2001)

    Google Scholar 

  251. M. Mamedov, F. Francia, L. Vitukhnovskaya, A. Semenov, G. Venturoli, in Proceedings of the 10th International Conference “Photosynthesis and Hydrogen Energy Research for Sustainability” (St. Petersburg, Russia, 23-28 June 2019) p. 75

  252. B.A. Diner, D.A. Force, D.W. Randall, R.D. Britt, Biochemistry 37, 17931 (1998)

    Google Scholar 

  253. R. Ahlbrink, M. Haumann, D. Cherepanov, O. Bögershausen, A. Mulkidjanian, W. Junge, Biochemistry 37, 1131 (1998)

    Google Scholar 

  254. P.J. Steinbach, R. Ionescu, C.R. Matthews, Biophys. J. 82, 2244 (2002)

    Google Scholar 

  255. M. Mamedov, A. Semenov, F. Francia, G. Venturoli, in preparation (2020)

  256. S. Reinmann, P. Mathis, Biochim. Biophys. Acta 635, 249 (1981)

    Google Scholar 

  257. S. Gerken, J.P. Dekker, E. Schlodder, H.T. Witt, Biochim. Biophys. Acta 977, 52 (1989)

    Google Scholar 

  258. B. Hillmann, E. Schlodder, Biochim. Biophys. Acta 1231, 76 (1995)

    Google Scholar 

  259. G. Lentzen, T. Schwarz, Appl. Microbiol. Biotechnol. 72, 623 (2006)

    Google Scholar 

  260. C.G. Hounsa, V.E. Brandt, J. Thevelein, S. Hohmann, B.A. Prior, Microbiology 144, 671 (1998)

    Google Scholar 

  261. P. Lamosa, L.O. Martins, M.S. da Costa, H. Santos, Appl. Environ. Microbiol. 6, 3591 (1998)

    Google Scholar 

  262. Z. Silva, S. Alarico, A. Nobre, R. Horlacher, J. Marugg, W. Boos, A.I. Mingote, M.S. da Costa, J. Bacteriol. 185, 5943 (2003)

    Google Scholar 

  263. C. De Virgilio, T. Hottinger, J. Domínguez, T. Boller, A. Wiemken, Eur. J. Biochem. 219, 179 (1994)

    Google Scholar 

  264. M.R. Michaud, D.L. Denlinger, J. Comp. Physiol. B 177, 753 (2007)

    Google Scholar 

  265. A. Kraegeloh, H.J. Kunte, Extremophiles 6, 453 (2002)

    Google Scholar 

  266. K. Lippert, E.A. Galinski, Appl. Microbiol. Biotechnol. 37, 61 (1992)

    Google Scholar 

  267. C. Tanne, E.A. Golovina, F.A. Hoekstra, A. Meffert, E.A. Galinski, Front. Microbiol. 5, 150 (2014)

    Google Scholar 

  268. I. Yu, M. Nagaoka, Chem. Phys. Lett. 388, 316 (2004)

    ADS  Google Scholar 

  269. G. Zaccai, I. Bgyan, J. Combet, G.J. Cuello, B. Demé, Y. Fichou, F.-X. Gallat, V.M. Galvan Josa, S. von Gronau, M. Haertlein, A. Martel, M. Moulin, M. Neumann, M. Weik, D. Oesterhelt, Sci. Rep. 6, 31434 (2016)

  270. N. Borges, A. Ramos, N.D.H. Raven, R.J. Sharp, H. Santos, Extremophiles 6, 209 (2002)

    Google Scholar 

  271. A. Nalepa, K. Möbius, M. Plato, W. Lubitz, A. Savitsky, Appl. Magn. Reson. 50, 1 (2019)

    Google Scholar 

Download references

Acknowledgements

Financial support from MIUR of Italy (RFO2018) is gratefully acknowledged by F. F. and G. V. This work was supported by the Russian Foundation for Basic Research (Grant 17-00-00201 to A. Yu. S.). The Max-Planck-Gesellschaft and the Cluster of Excellence RESOLV (EXC 1069), funded by the Deutsche Forschungsgemeinschaft (DFG), supported this work. K. M. gratefully acknowledges sustaining support by the Free University Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Möbius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möbius, K., Savitsky, A., Malferrari, M. et al. Soft Dynamic Confinement of Membrane Proteins by Dehydrated Trehalose Matrices: High-Field EPR and Fast-Laser Studies. Appl Magn Reson 51, 773–850 (2020). https://doi.org/10.1007/s00723-020-01240-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01240-y

Navigation