Synlett 2021; 32(03): 316-320
DOI: 10.1055/s-0040-1707262
letter

Palladium-Catalyzed Synthesis of Polysubstituted Pyrazoles by Ring-Opening Reactions of 2H-Azirines with Hydrazones

Jiaan Shao
a   School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China
,
Ke Shu
b   College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. of China
,
Shuangrong Liu
b   College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. of China
,
Huajian Zhu
a   School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China
,
Jiankang Zhang
a   School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China
,
Chong Zhang
a   School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China
,
Ling-Hui Zeng
a   School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. of China
,
Wenteng Chen
b   College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. of China
› Author Affiliations
This research was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY20H300001, the Medical Health Science and Technology Project of Zhejiang Provincial Health Commission under Grant No. 2020KY681, and The Second Round of ‘West Lake Scholar’ Introduction Plan of Hangzhou Municipal University in 2019 for J.S.; Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18H300001 for W.C.; and The Second Round of Excellent Innovation Team of Hangzhou Municipal University in 2019 for L.-H.Z.


Abstract

A palladium–catalyzed ring-opening reaction of 2H-azirines with hydrazones has been developed. This protocol provides an alternative route for the construction of various polysubstituted pyrazoles with a wide substrate scope. Moreover, a plausible mechanism is proposed for this reaction, which should further enrich the chemical conversion of 2H-azirines.

Supporting Information



Publication History

Received: 21 June 2020

Accepted after revision: 28 July 2020

Article published online:
28 August 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews on 2H-azirine chemistry, see:
    • 1a Nakamura S. Chem. Asian J. 2019; 14: 1323
    • 1b Huang C.-Y, Doyle AG. Cm. Rev. 2014; 114: 8153
    • 1c Khlebnikov AF, Novikov MS. Tetrahedron 2013; 69: 3363
    • 1d Palacios F, Ochoa de Retana AM, Martínez de Marigorta E, de los Santos JM. Eur. J. Org. Chem. 2001; 2001: 2401
    • 2a Sujatha C, Bhatt CS, Ravva MK, Suresh AK, Namitharan K. Org. Lett. 2018; 20: 3241
    • 2b Prechter A, Henrion G, Faudot dit Bel P, Gagosz F. Angew. Chem. Int. Ed. 2014; 53: 4959
    • 2c Jiang Y, Park C.-M, Loh T.-P. Org. Lett. 2014; 16: 3432
    • 2d Loy NS. Y, Singh A, Xu X, Park C.-M. Angew. Chem. Int. Ed. 2013; 52: 2212
    • 3a Loy NS. Y, Kim S, Park C.-M. Org. Lett. 2015; 17: 395
    • 3b Ryu T, Baek Y, Lee PH. J. Org. Chem. 2015; 80: 2376 ; corrigendum: J. Org. Chem. 2015, 80, 9804
    • 3c Wang Y, Lei X, Tang Y. Chem. Commun. 2015; 51: 4507
    • 4a Zhu L, Yu Y, Mao Z, Huang X. Org. Lett. 2015; 17: 30
    • 4b Li T, Xin X, Wang C, Wang D, Wu F, Li X, Wan B. Org. Lett. 2014; 16: 4806
    • 4c Filho Faria dos Santos P, Schuchardt U. Angew. Chem. Int. Ed. 1977; 16: 647
    • 4d Zhao M.-N, Ren Z.-H, Yang D.-S, Guan Z.-H. Org. Lett. 2018; 20: 1287
    • 4e Li T, Yan H, Li X, Wang C, Wan B. J. Org. Chem. 2016; 81: 12031
    • 4f Galenko EE, Shakirova FM, Bodunov VA, Novikov MS, Khlebnikov AF. Org. Biomol. Chem. 2020; 18: 2283
    • 5a Taber DF, Tian WW. J. Am. Chem. Soc. 2006; 128: 1058
    • 5b Jana S, Clements MD, Sharp BK, Zheng N. Org. Lett. 2010; 12: 3736
    • 5c Thangaraj M, Bhojgude SS, Jain S, Gonnade RG, Biju AT. J. Org. Chem. 2016; 81: 8604
    • 5d Khaidarov AR, Rostovskii NV, Zolotarev AA, Khlebnikov AF, Novikov MS. J. Org. Chem. 2019; 84: 3743
    • 6a Rossa TA, Fantinel M, Bortoluzzi AJ, Sá MM. Eur. J. Org. Chem. 2018; 2018: 4171
    • 6b Angyal A, Demjén A, Wölfling J, Puskás LG, Kanizsai I. J. Org. Chem. 2020; 85: 3587
    • 6c Shi S, Xu K, Jiang C, Ding Z. J. Org. Chem. 2018; 83: 14791
    • 6d Cardoso AL, Lemos A, Pinhoe e Melo TM. V. D. Eur. J. Org. Chem. 2014; 2014: 5159
    • 6e Auricchio S, Grassi S, Malpezzi L, Sartori AS, Truscello AM. Eur. J. Org. Chem. 2001; 1183
    • 6f Müller F, Mattay J. Angew. Chem. Int. Ed. 1991; 30: 1336
    • 7a Serebryannikova AV, Galenko EE, Novikov MS, Khlebnikov AF. J. Org. Chem. 2019; 84: 15567
    • 7b Duan X, Yang K, Lu J, Kong X, Liu N, Ma J. Org. Lett. 2017; 19: 3370
    • 7c Ning Y, Otani Y, Ohwada T. J. Org. Chem. 2017; 82: 6313
    • 7d Zeng T.-T, Xuan J, Ding W, Wang K, Lu L.-Q, Xiao W.-J. Org. Lett. 2015; 17: 4070
    • 7e Shah RS, Navathel SS, Dikundwar AG, Row TN. G, Vasella AT. Eur. J. Org. Chem. 2013; 2013: 264
    • 8a Zhou W, Zhang M, Li H, Chen W. Org. Lett. 2017; 19: 10
    • 8b Sakharov AP, Rostovskii NV, Khlebnikov AF, Panikorovskii TL, Novikov MS. Org. Lett. 2019; 21: 3615
    • 8c Pawar SK, Sahani L, Liu R.-S. Chem. Eur. J. 2015; 21: 10843
    • 8d Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Chem. Commun. 2020; 56: 5050
    • 8e Smetanin IA, Agafonova AV, Rostovskii NV, Khlebnikov AF, Yufit DS, Novikov MS. Org. Chem. Front. 2020; 7: 525
    • 9a Havrylyuk D, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. J. Med. Chem. 2012; 55: 8630
    • 9b Liu J.-J, Sun J, Fang Y.-B, Yang Y.-A, Jiao R.-H, Zhu H.-L. Org. Biomol. Chem. 2014; 12: 998
    • 9c Habeeb AG, Praveen Rao PN, Knaus EE. J. Med. Chem. 2001; 44: 3039
    • 9d Dai H.-X, Stepan AF, Plummer MS, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
  • 10 Pérez-Fernández R, Goya P, Elguero J. ARKIVOC 2014; 233
  • 11 Ansari A, Ali A, Asif M, Shamsuzzaman S. New J. Chem. 2017; 41: 16
  • 12 Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Molecules 2018; 23: 134
  • 13 Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
  • 14 Wu F, Zhang M, Zhou W, Chen W, Liu M, Wu H. J. Org. Chem. 2018; 83: 5999
  • 15 Zhao J, Goldman AS, Hartwig JF. Science 2005; 307: 1080
  • 16 Koroleff F. Determination of Total Nitrogen in Natural Waters by Means of Persulfate Oxidation, International Council for the Exploration of the Sea (ICES), Council Meeting (2nd ed.), Paper C:8 1969. 1970 ; ICES: Copenhagen; (accesed Aug 24, 2020) http://ices.dk/sites/pub/CM%20Doccuments/1969/C/1969_C8.pdf
  • 17 Polysubstituted Pyrazoles 3a–t; General ProcedureThe appropriate 2H-azirine (1; 1.05 mmol), hydrazone 2 (1.0 mmol), Pd(OAc)2 (10 mol%), K2S2O8 (2.0 mmol), CsF (1.0 mmol), and anhyd 1,4-dioxane (6 mL) were sequentially added to a sealed tube under N2, and the mixture was stirred at 100 °C for about 12 h until the reaction was complete (TLC). The mixture was then filtered through diatomite, and the filter cake was washed with EtOAc(10 mL). The filtrate was collected and concentrated under reduced pressure, and the crude product was purified by chromatography [silica gel, PE–EtOAc (40:1)].3-(4-Bromophenyl)-1,4-diphenyl-1H-pyrazole (3a)Yellow solid; yield: 281 mg (75%); mp 113.4–114.7 °C. 1H NMR (500 MHz, DMSO-d 6): δ = 8.78 (s, 1 H), 7.95 (d, J = 7.8 Hz, 2 H), 7.59 (d, J = 8.5 Hz, 2 H), 7.54 (t, J = 7.9 Hz, 2 H), 7.45 (d, J = 8.5 Hz, 2 H), 7.41–7.31 (m, 6 H). 13C NMR (125 MHz, DMSO-d 6): δ = 148.2, 139.3, 132.2, 132.1, 131.4, 129.9, 129.5, 128.6, 128.3, 128.3, 127.1, 126.5, 122.2, 121.3, 118.4. HRMS (ESI): m/z [M+ H]+ calcd for C21H16BrN2: 375.0491; found: 375.0492.