Skip to main content
Log in

Association of Sequence Variants in the CKM (Creatine Kinase, M-Type) Gene with Racing Performance of Homing Pigeons

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The aim of the study was to analyze the associations between SNPs in the creatine kinase gene (CKM) and racing performance of homing pigeons. A 468-base pairs fragment of the CKM gene (a part of exon 11 and 3'UTR) was amplified. Five PCR products were sequenced. Two substitutions in the amplified region were observed (g.588268 T>C and g.588285 T>C). PCR-RFLP method was used to genotype 123 racing pigeons (CKM/Hpy188I and CKM/BsrDI) for the further association analysis. The frequencies of genotypes analyzed were: CKM/Hpy188ICC – 0.008, CKM/Hpy188ICT – 0.057, CKM/Hpy188ITT – 0.935 and CKM/BsrDICC– 0.008, CKM/BsrDICT– 0.016, CKM/BsrDITT– 0.976. The effect of one SNP studied on racing performance of pigeons was statistically significant. The largest difference in ace points (APs) was found for CKM/BsrDI (g.588285 T>C). Individuals with the CC and CT genotypes had lower racing performance than TT ones. The differences between CC and TT pigeons were statistically significant (p = 0.0391). Thus, racing pigeons with the most common genotypes (TT) had better racing performance than individuals with minor allele in genotype. However, the observation of an individual with CC genotype in the CKM/Hpy188I with the highest APs in two seasons studied complicates the final conclusion. Based on the obtained results, it may be concluded that two SNPs in the CKM detected in this study were not the major determinant of racing performance in sport pigeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Blasco, R., Finlayson, C., Rosell, J., et al., The earliest pigeon fanciers, Sci. Rep., 2014, vol. 4, p. 5971. https://doi.org/10.1038/srep05971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. El Gemaiey, G.A.M., The pigeon towers of Isfahan-Iran, IOSR-JHSS, 2016, vol. 21, no. 12, pp. 69—81. https://doi.org/10.9790/0837-2112076981

    Article  Google Scholar 

  3. Jerolmack, C., Animal archeology: domestic pigeons and the nature—culture dialectic, Qual. Sociol. Rev., 2007, vol. 3, no. 1, pp. 74—95.

    Google Scholar 

  4. https://time.com/5554173/armando-pigeon-auction/.

  5. https://www.uniprot.org/uniprot/P11009.

  6. Bouwman, F.G., van Ginneken, M.M., van der Kolk, et al., Novel markers for tying-up in horses by proteomics analysis of equine muscle biopsies, Comp. Biochem. Physiol., Part D Genomics Proteomics, 2010, vol. 5, no. 2, pp. 178—183. https://doi.org/10.1016/j.cbd.2010.03.009

    Article  CAS  Google Scholar 

  7. Echegaray, M. and Rivera, M.A., Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance genetic and molecular evidence, Sports Med., 2001, vol. 31, no. 13, pp. 919—934. https://doi.org/10.2165/00007256-200131130-00003

    Article  CAS  PubMed  Google Scholar 

  8. Dubé, M.P., Zetler, R., Barhdadi, A., et al., CKM and LILRB5 are associated with serum levels of creatine kinase, Circ. Cardiovasc. Genet., 2014, vol. 7, no. 6, pp. 880—886. https://doi.org/10.1161/CIRCGENETICS.113.000395

    Article  CAS  PubMed  Google Scholar 

  9. Kristjansson, R.P., Oddsson, A., Helgason, H., et al., Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase, Nat. Commun., 2016, vol. 7, p. 10572. https://doi.org/10.1038/ncomms10572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, D.Q., Hu, Y., Liu, et al., Muscle-specific creatine kinase gene polymorphism and running economy responses to an 18-week 5000-m training programme, Br. J. Sports Med., 2006, vol. 40, no. 12, pp. 988—991. https://doi.org/10.1136/bjsm.2006.029744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fedotovskaya, O.N., Popov, D.V., Vinogradova, O.L., and Akhmetov, I.I., Association of the muscle-specific creatine kinase (CKMM) gene polymorphism with physical performance of athletes, Fiziol. Chel., 2012, vol. 38, no. 1, pp. 105—109. https://doi.org/10.1134/S0362119712010082

    Article  CAS  Google Scholar 

  12. Gronek, P., Holdys, J., Kryściak, J., and Stanisławski, D., CKM gene G (Ncoi-) allele has a positive effect on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism, J. Hum. Kinet., 2013, vol. 39, pp. 137—145. https://doi.org/10.2478/hukin-2013-0076

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eider, J., Ahmetov, I.I., Fedotovskaya, O.N., et al., CKM gene polymorphism in Russian and Polish rowers, Russ. J. Genet., 2015, vol. 51, no. 3, pp. 318—321. https://doi.org/10.1134/S1022795415030023

    Article  CAS  Google Scholar 

  14. Chen, C., Sun, Y., Liang, H., et al., A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance, Biol. Sport, 2017, vol. 34, no. 4, pp. 323—330. https://doi.org/10.5114/biolsport.2017.69819

    Article  PubMed  PubMed Central  Google Scholar 

  15. Döring, F., Onur, S., Kürbitz, C., et al., Single nucleotide polymorphisms in the myostatin (MSTN) and muscle creatine kinase (CKM) genes are not associated with elite endurance performance, Scand. J. Med. Sci. Sports, 2011, vol. 21, no. 6, pp. 841—845. https://doi.org/10.1111/j.1600-0838.2010.01131.x

    Article  PubMed  Google Scholar 

  16. Gu, J., MacHugh, D.E., McGivney, B.A., et al., Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses, Equine Vet. J. Suppl., 2010, vol. 42, suppl. 38, pp. 569—575. https://doi.org/10.1111/j.2042-3306.2010.00181.x

    Article  Google Scholar 

  17. Pereira, G.L., de Matteis, R., Regitano, L.C.A., et al., MSTN, CKM, and DMRT3 gene variants in different lines of Quarter Horses, J. Equine Vet. Sci., 2016, vol. 39, pp. 33—37. https://doi.org/10.1016/j.jevs.2015.09.001

    Article  Google Scholar 

  18. Negro Rama, S., Valera, M., Membrillo, et al., Quantitative analysis of short- and long-distance racing performance in young and adult horses and association analysis with functional candidate genes in Spanish Trotter horses, J. Anim. Breed. Genet., 2016, vol. 133, no. 5, pp. 347—356. https://doi.org/10.1111/jbg.12208

    Article  CAS  PubMed  Google Scholar 

  19. Untergasser, A., Cutcutache, I., Koressaar, T., et al., Primer3—new capabilities and interfaces, Nucleic Acids Res., 2012, vol. 40, no. 15. e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Proskura, W.S., Cichoń, D., Grzesiak, W., et al., Single nucleotide polymorphism in the LDHA gene as a potential marker for the racing performance of pigeons, J. Poult. Sci., 2014, vol. 51, no. 4, pp. 364—368. https://doi.org/10.2141/jpsa.0130237

    Article  CAS  Google Scholar 

  21. Ramadan, S., Miyake, T., Yamaura, J., and Inoue-Murayama, M., LDHA gene is associated with pigeon survivability during racing competitions, PLoS One, 2018, vol. 13, no. 5. e0195121. https://doi.org/10.1371/journal.pone.0195121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jacob, Y., Spiteri, T., Hart, N.H., and Anderton, R.S., The potential role of genetic markers in talent identification and athlete assessment in elite sport, Sports (Basel), 2018, vol. 6, no. 3, p. E88. https://doi.org/10.3390/sports6030088

    Article  PubMed  Google Scholar 

  23. Klimov, E.A., Rudko, O.I., and Stolpovsky, Y.A., The frequencies of alleles of single nucleotide substitutions in the CCK and CCK2R genes in some Russian cattle breeds, Russ. J. Genet., 2019, vol. 55, no. 6, pp. 767—769. https://doi.org/10.1134/S1022795419060061

    Article  CAS  Google Scholar 

  24. Proskura, W.S., Kustosz, J., Dybus, A, and Lanckriet, R., Polymorphism in dopamine receptor D4 gene is associated with pigeon racing performance, Anim. Genet., 2015, vol. 46, no. 5, pp. 586—587. https://doi.org/10.1111/age.12328

    Article  PubMed  Google Scholar 

  25. Proskura, W.S., Łukaszewicz, A., Dzierzba, E., et al., The Cys83Gly amino acid substitution in feather keratin is associated with pigeon performance in long-distance races, Vet. Med. (Praha), 2017, vol. 62, no. 4, pp. 221—225. https://doi.org/10.17221/271/2015-VETMED

    Article  CAS  Google Scholar 

  26. Dybus, A., Proskura, W., Pawlina, E., and Nowak, B., Associations between polymorphisms in the myostatin, αA-globin and lactate dehydrogenase B genes and racing performance in homing pigeons, Vet. Med. (Praha), 2018, vol. 63, no. 8, pp. 390—394. https://doi.org/10.17221/149/2017-VETMED

    Article  CAS  Google Scholar 

  27. Conne, B., Stutz, A., and Vassalli, JD., The 3' untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology?, Nat. Med., 2000, vol. 6, no. 6, pp. 637—641. https://doi.org/10.1038/76211

    Article  CAS  PubMed  Google Scholar 

  28. Tatarinova, T.V., Chekalin, E., Nikolsky, Y., et al., Nucleotide diversity analysis highlights functionally important genomic regions, Sci. Rep., 2016, vol. 6, p. 35730. https://doi.org/10.1038/srep35730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, Q.H., Zhao, L.J., Wang, P., et al., Comprehensive analysis of the association of EGFR, CALM3 and SMARCD1 gene polymorphisms with BMD in Caucasian women, PLoS One, 2014, vol. 9, no. 11. e112358. https://doi.org/10.1371/journal.pone.0112358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leng, L., Wang, S., Li, Z., et al., A polymorphism in the 3'-flanking region of insulin-like growth factor binding protein 2 gene associated with abdominal fat in chickens, Poult. Sci., 2009, vol. 88, no. 5, pp. 938—942. https://doi.org/10.3382/ps.2008-00453

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y.C., Han, R.L., Li, Z.J., et al., Polymorphisms of flanking region of the ASB15 gene and their associations with performance traits in chicken, Anim. Biotechnol., 2017, vol. 28, no. 1, pp. 53—60. https://doi.org/10.1080/10495398.2016.1200986

    Article  CAS  PubMed  Google Scholar 

  32. Gan, Q.F., Zhang, L.P., Li, J.Y., et al., Association analysis of thyroglobulin gene variants with carcass and meat quality traits in beef cattle, J. Appl. Genet., 2008, vol. 49, no. 3, pp. 251—255. https://doi.org/10.1007/BF03195621

    Article  PubMed  Google Scholar 

  33. McGivney, B.A., McGettigan, P.A., Browne, J.A., et al., Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training, BMC Genomics, 2010, vol. 11, p. 398. https://doi.org/10.1186/1471-2164-11-398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Welle, S., Bhatt, K., and Thornton, C.A., Inventory of high-abundance mRNAs in skeletal muscle of normal men, Genome Res., 1999, vol. 9, no. 5, pp. 506—513. https://doi.org/10.1101/gr.9.5.506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gazda, M.A., Andrade, P., Afonso, S., et al., Signatures of selection on standing genetic variation underlie athletic and navigational performance in racing pigeons, Mol. Biol. Evol., 2018, vol. 35, no. 5, pp. 1176—1189. https://doi.org/10.1093/molbev/msy030

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dybus.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dybus, A., Yu, Y.H., Proskura, W. et al. Association of Sequence Variants in the CKM (Creatine Kinase, M-Type) Gene with Racing Performance of Homing Pigeons. Russ J Genet 56, 1006–1011 (2020). https://doi.org/10.1134/S1022795420080025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420080025

Keywords:

Navigation