Skip to main content
Log in

Efficient 16 Boolean logic and arithmetic based on bipolar oxide memristors

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The physically separated memory and logic units in traditional von Neumann computers place essential limits on the performance and cause increased energy consumption, and hence in-memory computing is required to overcome this bottleneck. Here, a new bipolar memristor based in-memory logic approach is proposed, which is capable of achieving all 16 possible Boolean logic functions in a single device in less than 3 steps. This approach does not require initialization and can facilitate logic cascading, and the calculation taking place in-situ is showcased by 1-bit full adder and 2-bit multiplier with improved efficiency, thus showing a great prospect in future in-memory computing architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waldrop M M. The chips are down for Moore’s law. Nature, 2016, 530: 144–147

    Article  Google Scholar 

  2. Ventra M D, Pershin Y V. The parallel approach. Nat Phys, 2013, 9: 200–202

    Article  Google Scholar 

  3. Cassinerio M, Ciocchini N, Ielmini D. Logic computation in phase change materials by threshold and memory switching. Adv Mater, 2013, 25: 5975–5980

    Article  Google Scholar 

  4. Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345: 668–673

    Article  Google Scholar 

  5. Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521: 61–64

    Article  Google Scholar 

  6. Li S C, Xu C, Zou Q S, et al. Pinatubo: a processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories. In: Proceedings of the 53rd Annual Design Automation Conference, Austin Texas, 2016

  7. Borghetti J, Snider G S, Kuekes P J, et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature, 2010, 464: 873–876

    Article  Google Scholar 

  8. Linn E, Rosezin R, Tappertzhofen S, et al. Beyond von Neumann-logic operations in passive crossbar arrays alongside memory operations. Nanotechnology, 2012, 23: 305205

    Article  Google Scholar 

  9. Yang Y C, Yin M H, Yu Z Z, et al. Multifunctional nanoionic devices enabling simultaneous heterosynaptic plasticity and efficient in-memory Boolean logic. Adv Electron Mater, 2017, 3: 1700032

    Article  Google Scholar 

  10. Xu L Y, Yuan R, Zhu Z H, et al. Memristor-based efficient in-memory logic for cryptologic and arithmetic applications. Adv Mater Technol, 2019, 4: 1900212

    Article  Google Scholar 

  11. Goswami S, Matula A J, Rath S P, et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat Mater, 2017, 16: 1216–1224

    Article  Google Scholar 

  12. Wong H S P, Salahuddin S. Memory leads the way to better computing. Nat Nanotech, 2015, 10: 191–194

    Article  Google Scholar 

  13. Hwang C S. Prospective of semiconductor memory devices: from memory system to materials. Adv Electron Mater, 2015, 1: 1400056

    Article  Google Scholar 

  14. Ma W, Zidan M A, Lu W D. Neuromorphic computing with memristive devices. Sci China Inf Sci, 2018, 61: 060422

    Article  Google Scholar 

  15. Yang Y C, Huang R. Probing memristive switching in nanoionic devices. Nat Electron, 2018, 1: 274–287

    Article  Google Scholar 

  16. Yang J J, Pickett M D, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotech, 2008, 3: 429–433

    Article  Google Scholar 

  17. Kim K M, Jeong D S, Hwang C S, et al. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011, 22: 254002

    Article  Google Scholar 

  18. Choi B J, Jeong D S, Kim S K, et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J Appl Phys, 2005, 98: 033715

    Article  Google Scholar 

  19. Ielmini D, Wong H S P. In-memory computing with resistive switching devices. Nat Electron, 2018, 1: 333–343

    Article  Google Scholar 

  20. Vourkas I, Sirakoulis G C. Emerging memristor-based logic circuit design approaches: a review. IEEE Circ Syst Mag, 2016, 16: 15–30

    Article  Google Scholar 

  21. Li H T, Gao B, Chen Z W, et al. A learnable parallel processing architecture towards unity of memory and computing. Sci Rep, 2015, 5: 13330

    Article  Google Scholar 

  22. Serb A, Khiat A, Prodromakis T. Seamlessly fused digital-analogue reconfigurable computing using memristors. Nat Commun, 2018, 9: 2170

    Article  Google Scholar 

  23. You T G, Shuai Y, Luo W B, et al. Exploiting memristive BiFeO3 bilayer structures for compact sequential logics. Adv Funct Mater, 2014, 24: 3357–3365

    Article  Google Scholar 

  24. Breuer T, Siemon A, Linn E, et al. A HfO2-based complementary switching crossbar adder. Adv Electron Mater, 2015, 1: 1500138

    Article  Google Scholar 

  25. Siemon A, Breuer T, Aslam N, et al. Realization of Boolean logic functionality using redox-based memristive devices. Adv Funct Mater, 2015, 25: 6414–6423

    Article  Google Scholar 

  26. Gao S, Zeng F, Wang M J, et al. Implementation of complete Boolean logic functions in single complementary resistive switch. Sci Rep, 2015, 5: 15467

    Article  Google Scholar 

  27. Huang P, Kang J F, Zhao Y D, et al. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv Mater, 2016, 28: 9758–9764

    Article  Google Scholar 

  28. Chen B, Cai F X, Zhou J T, et al. Efficient in-memory computing architecture based on crossbar arrays. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), Washington, 2015

  29. Kvatinsky S, Belousov D, Liman S, et al. MAGIC-memristor-aided logic. IEEE Trans Circ Syst II, 2014, 61: 895–899

    Google Scholar 

  30. Shen W S, Huang P, Fan M Q, et al. Stateful logic operations in one-transistor-one- resistor resistive random access memory array. IEEE Electron Device Lett, 2019, 40: 1538–1541

    Article  Google Scholar 

  31. Liu G Z, Zheng L J, Wang G Y, et al. A carry lookahead adder based on hybrid CMOS-memristor logic circuit. IEEE Access, 2019, 7: 43691–43696

    Article  Google Scholar 

  32. Xu N, Park T G, Kim H J, et al. A stateful logic family based on a new logic primitive circuit composed of two antiparallel bipolar memristors. Adv Intell Syst, 2020, 2: 1900082

    Article  Google Scholar 

  33. Yang H, Duan S K, Dong Z K, et al. A memristor-CMOS-based general-logic circuit and its applications (in Chinese). Sci Sin Inform, 2020, 50: 289–302

    Article  Google Scholar 

  34. Wald N, Kvatinsky S. Understanding the influence of device, circuit and environmental variations on real processing in memristive memory using memristor aided logic. MicroElectron J, 2019, 86: 22–33

    Article  Google Scholar 

  35. Cheng L, Zhang M Y, Li Y, et al. Reprogrammable logic in memristive crossbar for in-memory computing. J Phys D-Appl Phys, 2017, 50: 505102

    Article  Google Scholar 

  36. Kvatinsky S, Satat G, Wald N, et al. Memristor-based material implication (IMPLY) logic: design principles and methodologies. IEEE Trans VLSI Syst, 2014, 22: 2054–2066

    Article  Google Scholar 

  37. Adam G C, Hoskins B D, Prezioso M, et al. Optimized stateful material implication logic for three-dimensional data manipulation. Nano Res, 2016, 9: 3914–3923

    Article  Google Scholar 

  38. Chen W H, Lin W J, Lai L Y, et al. A 16 Mb dual-mode ReRAM macro with sub-14 ns computing-in-memory and memory functions enabled by self-write termination scheme. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), San Francisco, 2017

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2017YFA0207600), National Natural Science Foundation of China (Grant Nos. 61925401, 61674006, 61927901, 61421005), and the 111 Project (Grant No. B18001). Yuchao YANG acknowledges the support from Beijing Academy of Artificial Intelligence (BAAI) and the Tencent Foundation through the Xplorer Prize.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru Huang or Yuchao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R., Ma, M., Xu, L. et al. Efficient 16 Boolean logic and arithmetic based on bipolar oxide memristors. Sci. China Inf. Sci. 63, 202401 (2020). https://doi.org/10.1007/s11432-020-2866-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2866-0

Keywords

Navigation