Skip to main content
Log in

Growth of a Thick AlN Epilayer by Using the Mixed-Source Hydride Vapor Phase Epitaxy Method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A thick AlN epilayer with an approximately 1.25-mm thickness was grown on a sapphire substrate by using a mixed source (Al+Ga of very small amount) at around 1150 °C for 2 hours and a mixed-source hydride vapor phase epitaxy (HVPE) method in a simplified reactor interlinked in series with no separation between the source and the growth zones. The simplified reactor was designed to minimize the reaction between quartz and AlCl vapor species of a high partial pressure at around 1150 °C. Thegrowthofthe thickAlN epilayerseemed to be due to theveryhighgrowthrate (maximum value of 600 µm/h) resulting from the minimization of the response distance between the vapor species and the source gases caused by interlinking in series the edge of the source zone with the substrate in the growth zone. The characteristics of the grown thick AlN epilayer were investigated by using cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Raman spectrometry and X-ray diffraction (XRD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Walker et al., Appl. Phys. Lett. 68, 2100 (1996).

    Article  ADS  Google Scholar 

  2. R. McClintock et al., Appl. Phys. Lett. 84, 1248 (2004).

    Article  ADS  Google Scholar 

  3. J. Li et al., Appl. Phys. Lett. 89, 213510 (2006).

    Article  ADS  Google Scholar 

  4. S. Kitagawa, H. Miyake and K. Hiramatsu, Jpn. J. Appl. Phys. 53, 05FL03 (2014).

    Article  Google Scholar 

  5. R. Gaska et al., Appl. Phys. Lett. 81, 4658 (2002).

    Article  ADS  Google Scholar 

  6. Z. Ren et al., Appl. Phys. Lett. 91, 051116 (2007).

    Article  ADS  Google Scholar 

  7. T. Takano, Y. Narita, A. Horiuchi and H. Kawanishi, Appl. Phys. Lett. 84, 3567 (2004).

    Article  ADS  Google Scholar 

  8. A. Yasan et al., Appl. Phys. Lett. 83, 4701 (2003).

    Article  ADS  Google Scholar 

  9. G. Kipshidze et al., Appl. Phys. Lett. 80, 3682 (2002).

    Article  ADS  Google Scholar 

  10. K. H. Kim et al., Appl. Phys. Lett. 85, 4777 (2004).

    Article  ADS  Google Scholar 

  11. J. R. la Roche et al., Solid-State Electron. 48, 193 (2004).

    Article  ADS  Google Scholar 

  12. Y. Zhang et al., Appl. Phys. Lett. 102, 011106 (2013).

    Article  ADS  Google Scholar 

  13. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  Google Scholar 

  14. Z. Chen et al., Appl. Phys. Lett. 93, 191906 (2008).

    Article  ADS  Google Scholar 

  15. O. Kovalenkov et al., J. Cryst. Growth 281, 87 (2005).

    Article  ADS  Google Scholar 

  16. H. P. D. Schenk et al., J. Cryst. Growth 200, 45 (1999).

    Article  ADS  Google Scholar 

  17. Z. L. Weber, Jpn. J. Appl. Phys. 53, 100205 (2014).

    Article  Google Scholar 

  18. S. Zamir, B. Meyler, E. Zolotoyabko and J. Salzman, J. Cryst. Growth 218, 181 (2000).

    Article  ADS  Google Scholar 

  19. Y. Lu et al., J. Cryst. Growth 263, 4 (2004).

    Article  ADS  Google Scholar 

  20. M. Agrawal, K. Radhakrishnan, N. Dharmarasu and S. S. Pramana, Jpn. J. Appl. Phys. 54, 065701 (2015).

    Article  ADS  Google Scholar 

  21. S. U. Hong et al., Jpn. J. Appl. Phys. 41, 5507 (2002).

    Article  ADS  Google Scholar 

  22. D. Martin et al., Phys. Status Solidi A 194, 520 (2002).

    Article  ADS  Google Scholar 

  23. T. Hashimoto, F. Wu, J. S. Speck and S. Nakamura, Nat. Mater. 6, 568 (2007).

    Article  Google Scholar 

  24. K. M. Taylor and C. Lenie, J. Electrochem. Soc. 107, 308 (1960).

    Article  Google Scholar 

  25. G. A. Slack and T. F. McNelly, J. Cryst. Growth 42, 560 (1977).

    Article  ADS  Google Scholar 

  26. J. C. Rojo et al., J. Cryst. Growth 231, 317 (2001).

    Article  ADS  Google Scholar 

  27. K. Hiramatsu et al., J. Cryst. Growth 115, 628 (1991).

    Article  ADS  Google Scholar 

  28. Y. Kumagai, T. Yamane and A. Koukitu, J. Cryst. Growth 281, 62 (2005).

    Article  ADS  Google Scholar 

  29. A. Dadgar et al., J. Cryst. Growth 297, 306 (2006).

    Article  ADS  Google Scholar 

  30. Y. Kumagai, T. Nagashima and A. Koukitu, Jpn. J. Appl. Phys. 46, L389 (2007).

    Article  ADS  Google Scholar 

  31. G. S. Lee et al., Jpn. J. Appl. Phys. 51, 01AG06 (2012).

    Article  Google Scholar 

  32. H. Jeon et al., J. Korean Phys. Soc. 67, 643 (2015).

    Article  ADS  Google Scholar 

  33. H. Jeon et al., Jpn. J. Appl. Phys. 56, 01AD07 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A3A04036567).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung Soo Ahn or Suck-Whan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Park, J.H., Ahn, H.S. et al. Growth of a Thick AlN Epilayer by Using the Mixed-Source Hydride Vapor Phase Epitaxy Method. J. Korean Phys. Soc. 77, 282–287 (2020). https://doi.org/10.3938/jkps.77.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.282

Keywords

Navigation