Skip to main content
Log in

Spatial downscaling of MODIS Chlorophyll-a with machine learning techniques over the west coast of the Yellow Sea in South Korea

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Effective water quality monitoring of coastal areas through the measurement of Chlorophyll-a (Chl-a) has remarkably progressed by ocean color remote sensing. Among different sensors, Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 products provide reliable global representations of the Chl-a concentration. On the other hand, due to the coarse spatial resolution of MODIS data, its applicability is limited for spatially complex coastal regions. To overcome this limitation, a few downscaling techniques have been suggested based on the polynomial regression method. However, this type of regression has some restrictions, such as sensitivity to outliers, and nonlinear types of machine learning algorithms have not been tested in downscaling Chl-a datasets. Therefore, three machine learning (ML) techniques, support vector regression (SVR), random forest regression (RFR), and long short-term memory (LSTM), were developed using the Sentinel-2A/MSI bands as predictors and MODIS Chl-a as a predictand and compared their results with the results of multiple polynomial regression (MPR), to find the most suitable model for downscaling MODIS Chl-a in coastal area of South Korea. The obtained results showed that the 2nd degree MPR and SVR-Radial Basis Function (RBF) illustrate the best performance in the winter and summer days, respectively. In addition, LSTM is less sensitive to the changes in all variables (sensitivity index range from 0.31 to 0.48). Overall, we conclude that the downscaling approach based on ML models, especially SVR-RBF, can serve as a suitable alternative in some cases to produce high-resolution Chl-a maps, especially for coastal marine water quality monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Addesso P, Longo M, Maltese A, Restaino R, Vivone G (2015) Batch methods for resolution enhancement of TIR image sequences. IEEE J Sel Top Appl Earth Observ Remote Sens 8(7):3372–3385

    Article  Google Scholar 

  • Aghighi H, Azadbakht M, Ashourloo D, Shahrabi HS, Radiom S (2018) Machine learning regression techniques for the silage maize yield prediction using time-series images of landsat 8 OLI. IEEE J Sel Top Appl Earth Observ Remote Sens 11(12):4563–4577

    Article  Google Scholar 

  • Andréfouët S, Payri C, Hochberg EJ, Hu C, Atkinson MJ, Muller-Karger FE (2004) Use of in situ and airborne reflectance for scaling-up spectral discrimination of coral reef macroalgae from species to communities. Mar Ecol Prog Ser 283:161–177

    Article  Google Scholar 

  • Atkinson PM (2013) Downscaling in remote sensing. Int J Appl Earth Obs Geoinf 22:106–114

    Article  Google Scholar 

  • Bacher C, Grant J, Hawkins AJ, Fang J, Zhu M, Besnard M (2003) Modelling the effect of food depletion on scallop growth in Sungo Bay (China). Aquat Living Resour 16(1):10–24

    Article  Google Scholar 

  • Baillarin S, Meygret A, Dechoz C, Petrucci B, Lacherade S, Trémas T, Isola C, Martimort P, Spoto F (2012) Sentinel-2 level 1 products and image processing performances. In: 2012 IEEE international geoscience and remote sensing symposium: IEEE, pp 7003–7006

  • Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process Lett Rev 11(10):203–224

    Google Scholar 

  • Bechtel B, Zakšek K, Hoshyaripour G (2012) Downscaling land surface temperature in an urban area: a case study for Hamburg, Germany. Remote Sens 4(10):3184–3200

    Article  Google Scholar 

  • Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J Hydrol 508:418–429

    Article  Google Scholar 

  • Belgiu M, Drăguţ L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Article  Google Scholar 

  • Bierman P, Lewis M, Ostendorf B, Tanner J (2011) A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecol Ind 11(1):103–114

    Article  Google Scholar 

  • Blondeau-Patissier D, Gower JF, Dekker AG, Phinn SR, Brando VE (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Chen C, Zhao S, Duan Z, Qin Z (2015) An improved spatial downscaling procedure for TRMM 3B43 precipitation product using geographically weighted regression. IEEE J Sel Top Appl Earth Observ Remote Sens 8(9):4592–4604

    Article  Google Scholar 

  • Claustre H, Babin M, Merien D, Ras J, Prieur L, Dallot S, Prasil O, Dousova H, Moutin T (2005) Toward a taxon-specific parameterization of bio-optical models of primary production: a case study in the North Atlantic. J Geophys Res Oceans 110(C7):1–17

    Article  Google Scholar 

  • Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aquat Sci 39(5):791–803

    Article  Google Scholar 

  • Dawson A (2018) ajdawson/gridfill: Version 1.0.1 (Version v1.0.1). Zenodo. https://doi.org/10.5281/zenodo.3339265

  • Ebrahimy H, Azadbakht M (2019) Downscaling MODIS land surface temperature over a heterogeneous area: an investigation of machine learning techniques, feature selection, and impacts of mixed pixels. Comput Geosci 124:93–102

    Article  Google Scholar 

  • Fang J, Du J, Xu W, Shi P, Li M, Ming X (2013) Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area. Adv Water Resour 61:42–50

    Article  Google Scholar 

  • Fu Y, Xu S, Zhang C, Sun Y (2018) Spatial downscaling of MODIS Chlorophyll-a using Landsat 8 images for complex coastal water monitoring. Estuar Coast Shelf Sci 209:149–159

    Article  Google Scholar 

  • Gao F, Kustas W, Anderson M (2012a) A data mining approach for sharpening thermal satellite imagery over land. Remote Sens 4(11):3287–3319

    Article  Google Scholar 

  • Gao H, Birkett C, Lettenmaier DP (2012b) Global monitoring of large reservoir storage from satellite remote sensing. Water Resour Res 48(9):1–12

    Article  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  • Ghosh S (2010) SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output. J Geophys Res Atmos 115(D22):1–18

    Article  Google Scholar 

  • Ghosh A, Joshi P (2014) Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes. ISPRS J Photogramm Remote Sens 96:76–93

    Article  Google Scholar 

  • Goetz S, Gardiner N, Viers J (2008) Monitoring freshwater, estuarine and near-shore benthic ecosystems with multi-sensor remote sensing: an introduction to the special issue. Remote Sens Environ 112(11):3993–3995

    Article  Google Scholar 

  • Gower J (2001) Productivity and plankton blooms observed with Seawifs and in-situ sensors. In: IGARSS 2001. Scanning the present and resolving the future. Proceedings IEEE 2001 international geoscience and remote sensing symposium (Cat. No. 01CH37217): IEEE, pp 2181–2183

  • Gower J, King S, Yan W, Borstad G, Brown L (2003) Use of the 709 nm band of MERIS to detect intense plankton blooms and other conditions in coastal waters. In: Proc. MERIS User Workshop, Citeseer, Frascati, 10–13 November 2003

  • Gower J, King S, Borstad G, Brown L (2005) Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int J Remote Sens 26(9):2005–2012

    Article  Google Scholar 

  • Gower J, King S, Borstad G, Brown L (2008) The importance of a band at 709 nm for interpreting water-leaving spectral radiance. Can J Remote Sens 34(3):287–295

    Google Scholar 

  • Graves A (2012) Long short-term memory. In: Supervised sequence labelling with recurrent neural networks. Springer, Berlin, pp 37–45

    Chapter  Google Scholar 

  • Guan X (2009) Monitoring Lake Simcoe water quality using Landsat TM images. University of Waterloo, Waterloo

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J, Franklin J (2005) The elements of statistical learning: data mining, inference and prediction. Math Intell 27(2):83–85

    Google Scholar 

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  • Hokmalipour S, Darbandi MH (2011) Effects of nitrogen fertilizer on chlorophyll content and other leaf indicate in three cultivars of maize (Zea mays L.). World Appl Sci J 15(12):1780–1785

    Google Scholar 

  • Hu C (2009) A novel ocean color index to detect floating algae in the global oceans. Remote Sens Environ 113(10):2118–2129

    Article  Google Scholar 

  • Hu C, Muller-Karger FE, Taylor CJ, Carder KL, Kelble C, Johns E, Heil CA (2005) Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters. Remote Sens Environ 97(3):311–321

    Article  Google Scholar 

  • Hu C, Lee Z, Franz B (2012) Chlorophyll aalgorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J Geophys Res Oceans 117(C1):1–25

    Google Scholar 

  • Huot Y, Babin M, Bruyant F, Grob C, Twardowski M, Claustre H (2007) Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosci Discuss 4(2):707–745

    Google Scholar 

  • Hutengs C, Vohland M (2016) Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens Environ 178:127–141

    Article  Google Scholar 

  • Hwang S-j, Jo CH (2019) Tidal current energy resource distribution in Korea. Energies 12(22):4380

    Article  Google Scholar 

  • Hwang JH, Van SP, Choi B-J, Chang YS, Kim YH (2014) The physical processes in the Yellow Sea. Ocean Coast Manag 102:449–457

    Article  Google Scholar 

  • Immerzeel W, Rutten M, Droogers P (2009) Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens Environ 113(2):362–370

    Article  Google Scholar 

  • IOCCG (2000) Remote sensing of ocean colour in coastal, and other optically-complex, waters. In: Sathyendranath S (ed) Reports of the international ocean-colour coordinating group, no. 3, IOCCG, Dartmouth

  • Jozefowicz R, Zaremba W, Sutskever I (2015) An empirical exploration of recurrent network architectures. In: International conference on machine learning, pp 2342–2350

  • Kaheil YH, Gill MK, McKee M, Bastidas LA, Rosero E (2008) Downscaling and assimilation of surface soil moisture using ground truth measurements. IEEE Trans Geosci Remote Sens 46(5):1375–1384

    Article  Google Scholar 

  • Karl JW (2010) Spatial predictions of cover attributes of rangeland ecosystems using regression kriging and remote sensing. Rangel Ecol Manag 63(3):335–349

    Article  Google Scholar 

  • Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol 534:104–112

    Article  Google Scholar 

  • Koh C-H, Khim JS (2014) The Korean tidal flat of the Yellow Sea: physical setting, ecosystem and management. Ocean Coast Manag 102:398–414

    Article  Google Scholar 

  • Lavender S, Groom S (2001) The detection and mapping of algal blooms from space. Int J Remote Sens 22(2–3):197–201

    Article  Google Scholar 

  • Lee T, Singh VP (2018) Statistical downscaling for hydrological and environmental applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Letelier RM, Abbott MR (1996) An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens Environ 58(2):215–223

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  • Liu D, Pu R (2008) Downscaling thermal infrared radiance for subpixel land surface temperature retrieval. Sensors 8(4):2695–2706

    Article  Google Scholar 

  • Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol Processes Int J 24(7):917–923

    Article  Google Scholar 

  • McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432

    Article  Google Scholar 

  • McNeil VH, Cox ME, Preda M (2005) Assessment of chemical water types and their spatial variation using multi-stage cluster analysis, Queensland, Australia. J Hydrol 310(1–4):181–200

    Article  Google Scholar 

  • Merico A, Tyrrell T, Brown C, Groom S, Miller P (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophys Res Lett 30(6):1–4

    Article  Google Scholar 

  • Mohebzadeh H (2018) Extracting AL relationship for Urmia Lake, Iran using MODIS NDVI/NDWI indices. J Hydrogeol Hydrol Eng 7:1

    Google Scholar 

  • Mohebzadeh H, Fallah M (2019) Quantitative analysis of water balance components in Lake Urmia, Iran using remote sensing technology. Remote Sens Appl Soc Environ 13:389–400

    Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Moses WJ, Gitelson AA, Berdnikov S, Povazhnyy V (2009) Satellite estimation of chlorophyll-$ a $ concentration using the red and NIR bands of MERIS—the Azov sea case study. IEEE Geosci Remote Sens Lett 6(4):845–849

    Article  Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Article  Google Scholar 

  • Navarro G, Ruiz J (2006) Spatial and temporal variability of phytoplankton in the Gulf of Cádiz through remote sensing images. Deep Sea Res Part II Top Stud Oceanogr 53(11–13):1241–1260

    Article  Google Scholar 

  • Nazeer M, Nichol JE (2016) Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. J Hydrol 532:80–89

    Article  Google Scholar 

  • Pahlevan N, Schott JR (2013) Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):360–374

    Article  Google Scholar 

  • Pahlevan N, Lee Z, Wei J, Schaaf CB, Schott JR, Berk A (2014) On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens Environ 154:272–284

    Article  Google Scholar 

  • Park K-A, Lee E-Y, Chang E, Hong S (2015) Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J Mar Syst 143:24–38

    Article  Google Scholar 

  • Pesch R, Schmidt G, Schroeder W, Weustermann I (2011) Application of CART in ecological landscape mapping: two case studies. Ecol Ind 11(1):115–122

    Article  Google Scholar 

  • Raje D, Mujumdar P (2011) A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrol Process 25(23):3575–3589

    Article  Google Scholar 

  • Randolph K, Wilson J, Tedesco L, Li L, Pascual DL, Soyeux E (2008) Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens Environ 112(11):4009–4019

    Article  Google Scholar 

  • Rao C, Toutenburg H, Shalabh H (2008) Linear models and generalizations: least squares and alternatives. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rossi RE, Dungan JL, Beck LR (1994) Kriging in the shadows: geostatistical interpolation for remote sensing. Remote Sens Environ 49(1):32–40

    Article  Google Scholar 

  • Ruhmelhart D, Hinton G, Wiliams R (1986) Learning representations by back-propagation errors. Nature 323:533–536

    Article  Google Scholar 

  • Ruiz-Verdú A, Simis SG, de Hoyos C, Gons HJ, Peña-Martínez R (2008) An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sens Environ 112(11):3996–4008

    Article  Google Scholar 

  • Sathyendranath S, Watts L, Devred E, Platt T, Caverhill C, Maass H (2004) Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar Ecol Prog Ser 272:59–68

    Article  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Env Sci Dev 3(1):73

    Article  Google Scholar 

  • Schaeffer BA, Schaeffer KG, Keith D, Lunetta RS, Conmy R, Gould RW (2013) Barriers to adopting satellite remote sensing for water quality management. Int J Remote Sens 34(21):7534–7544

    Article  Google Scholar 

  • Scott JP, Werdell PJ (2019) Comparing level-2 and level-3 satellite ocean color retrieval validation methodologies. Opt Express 27(21):30140–30157

    Article  Google Scholar 

  • Shi J, Jiang L, Zhang L, Chen K-S, Wigneron J-P, Chanzy A, Jackson TJ (2006) Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans Geosci Remote Sens 44(11):3145–3153

    Article  Google Scholar 

  • Siegel DA, Behrenfeld MJ, Maritorena S, McClain CR, Antoine D, Bailey SW, Bontempi PS, Boss ES, Dierssen HM, Doney SC (2013) Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens Environ 135:77–91

    Article  Google Scholar 

  • Sima S, Ahmadalipour A, Tajrishy M (2013) Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens Environ 136:374–385

    Article  Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992

    Article  Google Scholar 

  • Smith VH (1998) Cultural eutrophication of inland, estuarine, and coastal waters. In: Successes, limitations, and frontiers in ecosystem science. Springer, pp 7–49

  • Spoto F, Sy O, Laberinti P, Martimort P, Fernandez V, Colin O, Hoersch B, Meygret A (2012) Overview of sentinel-2. In: 2012 IEEE international geoscience and remote sensing symposium, IEEE, pp 1707–1710

  • Srivastava PK, Han D, Ramirez MR, Islam T (2013) Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour Manage 27(8):3127–3144

    Article  Google Scholar 

  • Tatem AJ, Goetz SJ, Hay SI (2008) Fifty years of earth observation satellites: views from above have lead to countless advances on the ground in both scientific knowledge and daily life. Am Sci 96(5):390

    Article  Google Scholar 

  • Tongal H, Booij MJ (2018) Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. J Hydrol 564:266–282

    Article  Google Scholar 

  • Tuia D, Pacifici F, Kanevski M, Emery WJ (2009) Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Trans Geosci Remote Sens 47(11):3866–3879

    Article  Google Scholar 

  • Vapnik V (2013) The nature of statistical learning theory. Springer, Berlin

    Google Scholar 

  • Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592

    Article  Google Scholar 

  • Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–1560

    Article  Google Scholar 

  • Yaseen ZM, El-Shafie A, Jaafar O, Afan HA, Sayl KN (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844

    Article  Google Scholar 

  • Yu P-S, Yang T-C, Chen S-Y, Kuo C-M, Tseng H-W (2017) Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. J Hydrol 552:92–104

    Article  Google Scholar 

  • Zhang CI, Kim S (1999) Living marine resources of the Yellow Sea ecosystem in Korean waters: status and perspectives. In: Large marine ecosystems of the pacific rim. Blackwell Science, Cambridge, pp 163–178

    Google Scholar 

  • Zhang CI, Lim JH, Kwon Y, Kang HJ, Kim DH, Seo YI (2014) The current status of west sea fisheries resources and utilization in the context of fishery management of Korea. Ocean Coast Manag 102:493–505

    Article  Google Scholar 

  • Zhang D, Lin J, Peng Q, Wang D, Yang T, Sorooshian S, Liu X, Zhuang J (2018) Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. J Hydrol 565:720–736

    Article  Google Scholar 

  • Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018) Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918–929

    Article  Google Scholar 

  • Zhang T, Li B, Yuan Y, Gao X, Sun Q, Xu L, Jiang Y (2018) Spatial downscaling of TRMM precipitation data considering the impacts of macro-geographical factors and local elevation in the Three-River Headwaters Region. Remote Sens Environ 215:109–127

    Article  Google Scholar 

  • Zheng Z, Zeng Y, Li S, Huang W (2016) A new burn severity index based on land surface temperature and enhanced vegetation index. Int J Appl Earth Obs Geoinf 45:84–94

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate NASA and ESA (European Space Agency) for providing the MODIS and Sentinel-2A MSI data, respectively. Also, we would like to express our appreciation to the Korea Institute of Ocean Science and Technology (KIOST) for providing Chl-a measurements of the western coast of South Korea. This work was supported by the National Research Foundation of Korea (NRF) grant (2018R1A2B6001799) funded by the South Korean government (MEST). The authors thank the two anonymous reviewers, whose comments significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mohebzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebzadeh, H., Lee, T. Spatial downscaling of MODIS Chlorophyll-a with machine learning techniques over the west coast of the Yellow Sea in South Korea. J Oceanogr 77, 103–122 (2021). https://doi.org/10.1007/s10872-020-00562-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-020-00562-6

Keywords

Navigation