Skip to main content
Log in

The MPTP-lesioned marmoset model of Parkinson’s disease: proposed efficacy thresholds that may potentially predict successful clinical trial results

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset has been used extensively to model Parkinson’s disease, l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia and, more recently, dopaminergic psychosis. Whereas several experimental drugs have been tested in this primate, many of which subsequently underwent clinical trials, efficacy thresholds in the marmoset that would predict efficacy in the clinic are lacking. Here, we aimed to determine such efficacy end points that would be indicative of likely efficacy in clinical studies. To do so, we used the evidence-based medicine reviews published by the International Parkinson and Movement Disorder Society (IPMDS) to select drugs that were rated as clinically efficacious, likely efficacious or not efficacious for the treatment of parkinsonism, dyskinesia and psychosis. We then reviewed the literature in the MPTP-lesioned marmoset and identified articles reporting the effects of drugs that were included in the IPMDS recommendations, following which we estimated efficacy thresholds in the marmoset that would predict efficacy at the clinical level. We propose that, when drugs are administered as monotherapy, ≥ 50% reduction of global parkinsonism may be necessary to predict the possibility of clinical efficacy. As adjunct to a low dose of l-DOPA, we propose that an additional reduction of global parkinsonism ≥ 25% might predict clinical efficacy. As adjunct to an optimal dose of l-DOPA, we propose that additional anti-parkinsonian benefit ≥ 20%, with global parkinsonism as the end point, might predict clinical efficacy. For the treatment of dyskinesia, we suggest that the predictability threshold be set at ≥ 25% reduction of peak dose dyskinesia, while we believe that this threshold should be > 50% reduction of peak dose psychosis-like behaviours for psychosis-related end points. This article represents the first step in determining what efficacy might be necessary to achieve in pre-clinical studies in the MPTP-lesioned marmoset prior to confidently advancing drugs to clinical trials. We hope that it will help in the drug discovery and development process, notably by avoiding exposing patients to drugs that have little probability of clinical efficacy based upon pre-clinical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvir JM, Lieberman JA, Safferman AZ, Schwimmer JL, Schaaf JA (1993) Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med 329(3):162–167. https://doi.org/10.1056/NEJM199307153290303

    Article  CAS  PubMed  Google Scholar 

  • Antonini A, Tesei S, Zecchinelli A, Barone P, De Gaspari D, Canesi M, Sacilotto G, Meucci N, Mariani C, Pezzoli G (2006) Randomized study of sertraline and low-dose amitriptyline in patients with Parkinson’s disease and depression: effect on quality of life. Mov Disord 21(8):1119–1122. https://doi.org/10.1002/mds.20895

    Article  PubMed  Google Scholar 

  • Bedard P, Parkes JD, Marsden CD (1977) Nomifensine in Parkinson’s disease. Br J Clin Pharmacol 4(Suppl 2):187S–190S

    PubMed Central  Google Scholar 

  • Braun A, Fabbrini G, Mouradian MM, Serrati C, Barone P, Chase TN (1987) Selective D-1 dopamine receptor agonist treatment of Parkinson’s disease. J Neural Transm 68(1–2):41–50

    CAS  PubMed  Google Scholar 

  • Bronzova J, Sampaio C, Hauser RA, Lang AE, Rascol O, Theeuwes A, van de Witte SV, van Scharrenburg G, Bruegel Study G (2010) Double-blind study of pardoprunox, a new partial dopamine agonist, in early Parkinson’s disease. Mov Disord 25(6):738–746. https://doi.org/10.1002/mds.22948

    Article  PubMed  Google Scholar 

  • Chen JF, Cunha RA (2020) The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal. https://doi.org/10.1007/s11302-020-09694-2

    Article  PubMed  Google Scholar 

  • Close SP, Elliott PJ, Hayes AG, Marriott AS (1990) Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology 102(3):295–300

    CAS  PubMed  Google Scholar 

  • Clough CG, Bergmann KJ, Yahr MD (1984) Cholinergic and dopaminergic mechanisms in Parkinson’s disease after long-term l-DOPA administration. Adv Neurol 40:131–140

    CAS  PubMed  Google Scholar 

  • Cummings J, Isaacson S, Mills R, Williams H, Chi-Burris K, Corbett A, Dhall R, Ballard C (2014) Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383(9916):533–540. https://doi.org/10.1016/S0140-6736(13)62106-6

    Article  CAS  PubMed  Google Scholar 

  • Dorsey ER, Bloem BR (2018) The Parkinson pandemic—a call to action. JAMA Neurol 75(1):9–10. https://doi.org/10.1001/jamaneurol.2017.3299

    Article  PubMed  Google Scholar 

  • Elshoff JP, Cawello W, Andreas JO, Mathy FX, Braun M (2015) An update on pharmacological, pharmacokinetic properties and drug–drug interactions of rotigotine transdermal system in Parkinson’s disease and restless legs syndrome. Drugs 75(5):487–501. https://doi.org/10.1007/s40265-015-0377-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emre M, Rinne UK, Rascol A, Lees A, Agid Y, Lataste X (1992) Effects of a selective partial D1 agonist, CY 208–243, in de novo patients with Parkinson disease. Mov Disord 7(3):239–243. https://doi.org/10.1002/mds.870070309

    Article  CAS  PubMed  Google Scholar 

  • Filipova M, Filip V, Macek Z, Mullerova S, Markova J, Kas S, Zizkova B, Krivka J, Votavova M, Krejcova H (1988) Terguride in parkinsonism. A multicenter trial. Eur Arch Psychiatry Neurol Sci 237(5):298–303

    CAS  PubMed  Google Scholar 

  • Fox SH, Henry B, Hill M, Crossman A, Brotchie J (2002) Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 17(6):1180–1187. https://doi.org/10.1002/mds.10289

    Article  PubMed  Google Scholar 

  • Fox SH, Visanji NP, Johnston TH, Gomez-Ramirez J, Voon V, Brotchie JM (2006) Dopamine receptor agonists and levodopa and inducing psychosis-like behavior in the MPTP primate model of Parkinson disease. Arch Neurol 63(9):1343–1344. https://doi.org/10.1001/archneur.63.9.1343

    Article  PubMed  Google Scholar 

  • Fox SH, Visanji N, Reyes G, Huot P, Gomez-Ramirez J, Johnston T, Brotchie JM (2010) Neuropsychiatric behaviors in the MPTP marmoset model of Parkinson’s disease. Can J Neurol Sci 37(1):86–95

    PubMed  Google Scholar 

  • Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, Poewe W, Rascol O, Goetz CG, Sampaio C (2011) The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord 26(Suppl 3):S2–41. https://doi.org/10.1002/mds.23829

    Article  PubMed  Google Scholar 

  • Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, Coelho M, Sampaio C, Movement Disorder Society Evidence-Based Medicine C (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33(8):1248–1266. https://doi.org/10.1002/mds.27372

    Article  CAS  PubMed  Google Scholar 

  • Frackiewicz EJ, Jhee SS, Shiovitz TM, Webster J, Topham C, Dockens RC, Whigan D, Salazar DE, Cutler NR (2002) Brasofensine treatment for Parkinson’s disease in combination with levodopa/carbidopa. Ann Pharmacother 36(2):225–230

    CAS  PubMed  Google Scholar 

  • GBD 2016 Parkinson's Disease Collaborators (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11):939–953. https://doi.org/10.1016/S1474-4422(18)30295-3

    Article  Google Scholar 

  • Gnanalingham KK, Erol DD, Hunter AJ, Smith LA, Jenner P, Marsden CD (1995a) Differential anti-parkinsonian effects of benzazepine D1 dopamine agonists with varying efficacies in the MPTP-treated common marmoset. Psychopharmacology 117(3):275–286

    CAS  PubMed  Google Scholar 

  • Gnanalingham KK, Hunter AJ, Jenner P, Marsden CD (1995b) The differential behavioural effects of benzazepine D1 dopamine agonists with varying efficacies, co-administered with quinpirole in primate and rodent models of Parkinson’s disease. Psychopharmacology 117(3):287–297

    CAS  PubMed  Google Scholar 

  • Goetz CG, Tanner CM, Klawans HL (1984) Bupropion in Parkinson’s disease. Neurology 34(8):1092–1094

    CAS  PubMed  Google Scholar 

  • Goetz CG, Stebbins GT, Chung KA, Nicholas AP, Hauser RA, Merkitch D, Stacy MA (2017) Topiramate as an adjunct to amantadine in the treatment of dyskinesia in Parkinson’s disease: a randomized, double-blind, placebo-controlled multicenter study. Mov Disord 32(9):1335–1336. https://doi.org/10.1002/mds.27092

    Article  CAS  PubMed  Google Scholar 

  • Gordon PH, Pullman SL, Louis ED, Frucht SJ, Fahn S (2002) Mirtazapine in Parkinsonian tremor. Parkinsonism Relat Disord 9(2):125–126

    CAS  PubMed  Google Scholar 

  • Grondin R, Bedard PJ, Hadj Tahar A, Gregoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52(8):1673–1677

    CAS  PubMed  Google Scholar 

  • Hamadjida A, Nuara SG, Veyres N, Frouni I, Kwan C, Sid-Otmane L, Harraka MJ, Gourdon JC, Huot P (2017) The effect of mirtazapine on dopaminergic psychosis and dyskinesia in the parkinsonian marmoset. Psychopharmacology (Berlin) 234(6):905–911. https://doi.org/10.1007/s00213-017-4530-z(PMID: 28130646)

    Article  Google Scholar 

  • Hamadjida A, Nuara SG, Gourdon JC, Huot P (2018) The effect of mianserin on the severity of psychosis and dyskinesia in the parkinsonian marmoset. Prog Neuropsychopharmacol Biol Psychiatry 81:367–371. https://doi.org/10.1016/j.pnpbp.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  • Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P (2002) Dopamine, but not norepinephrine or serotonin, reuptake inhibition reverses motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Pharmacol Exp Ther 303(3):952–958. https://doi.org/10.1124/jpet.102.039743

    Article  CAS  PubMed  Google Scholar 

  • Hansard MJ, Jackson MJ, Smith LA, Rose S, Jenner P (2011) A major metabolite of bupropion reverses motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmosets. Behav Pharmacol 22(3):269–274. https://doi.org/10.1097/FBP.0b013e328345ca37

    Article  CAS  PubMed  Google Scholar 

  • Hauser RA, Zesiewicz TA (1997) Sertraline for the treatment of depression in Parkinson’s disease. Mov Disord 12(5):756–759. https://doi.org/10.1002/mds.870120522

    Article  CAS  PubMed  Google Scholar 

  • Hauser RA, Bronzova J, Sampaio C, Lang AE, Rascol O, Theeuwes A, van de Witte SV, Pardoprunox Study G (2009) Safety and tolerability of pardoprunox, a new partial dopamine agonist, in a randomized, controlled study of patients with advanced Parkinson’s disease. Eur Neurol 62(1):40–48. https://doi.org/10.1159/000216839

    Article  CAS  PubMed  Google Scholar 

  • Hely MA, Morris JG, Reid WG, Trafficante R (2005) Sydney multicenter study of Parkinson’s disease: non-l-dopa-responsive problems dominate at 15 years. Mov Disord 20(2):190–199. https://doi.org/10.1002/mds.20324

    Article  PubMed  Google Scholar 

  • Henry B, Fox SH, Peggs D, Crossman AR, Brotchie JM (1999) The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of l-dopa in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 14(5):744–753

    CAS  PubMed  Google Scholar 

  • Henry B, Fox SH, Crossman AR, Brotchie JM (2001) Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol 171(1):139–146. https://doi.org/10.1006/exnr.2001.7727

    Article  CAS  PubMed  Google Scholar 

  • Hill MP, Bezard E, McGuire SG, Crossman AR, Brotchie JM, Michel A, Grimee R, Klitgaard H (2003) Novel antiepileptic drug levetiracetam decreases dyskinesia elicited by l-dopa and ropinirole in the MPTP-lesioned marmoset. Mov Disord 18(11):1301–1305. https://doi.org/10.1002/mds.10542

    Article  PubMed  Google Scholar 

  • Hill MP, Brotchie JM, Crossman AR, Bezard E, Michel A, Grimee R, Klitgaard H (2004a) Levetiracetam interferes with the l-dopa priming process in MPTP-lesioned drug-naive marmosets. Clin Neuropharmacol 27(4):171–177

    CAS  PubMed  Google Scholar 

  • Hill MP, Ravenscroft P, Bezard E, Crossman AR, Brotchie JM, Michel A, Grimee R, Klitgaard H (2004b) Levetiracetam potentiates the antidyskinetic action of amantadine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate model of Parkinson’s disease. J Pharmacol Exp Ther 310(1):386–394. https://doi.org/10.1124/jpet.104.066191

    Article  CAS  PubMed  Google Scholar 

  • Ikeguchi K, Kuroda A (1995) Mianserin treatment of patients with psychosis induced by antiparkinsonian drugs. Eur Arch Psychiatry Clin Neurosci 244(6):320–324

    CAS  PubMed  Google Scholar 

  • Iravani MM, Jackson MJ, Kuoppamaki M, Smith LA, Jenner P (2003) 3,4-methylenedioxymethamphetamine (ecstasy) inhibits dyskinesia expression and normalizes motor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Neurosci 23(27):9107–9115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iravani MM, Tayarani-Binazir K, Chu WB, Jackson MJ, Jenner P (2006) In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates, the selective 5-hydroxytryptamine 1a agonist (R)-(+)-8-OHDPAT inhibits levodopa-induced dyskinesia but only with increased motor disability. J Pharmacol Exp Ther 319(3):1225–1234. https://doi.org/10.1124/jpet.106.110429

    Article  CAS  PubMed  Google Scholar 

  • Jackson MJ, Smith LA, Al-Barghouthy G, Rose S, Jenner P (2007) Decreased expression of l-dopa-induced dyskinesia by switching to ropinirole in MPTP-treated common marmosets. Exp Neurol 204(1):162–170. https://doi.org/10.1016/j.expneurol.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  • Jackson MJ, Andree TH, Hansard M, Hoffman DC, Hurtt MR, Kehne JH, Pitler TA, Smith LA, Stack G, Jenner P (2010) The dopamine D(2) receptor partial agonist aplindore improves motor deficits in MPTP-treated common marmosets alone and combined with l-dopa. J Neural Transm (Vienna) 117(1):55–67. https://doi.org/10.1007/s00702-009-0323-9

    Article  CAS  Google Scholar 

  • Jackson MJ, Swart T, Pearce RK, Jenner P (2014) Cholinergic manipulation of motor disability and l-DOPA-induced dyskinesia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets. J Neural Transm (Vienna) 121(2):163–169. https://doi.org/10.1007/s00702-013-1082-1

    Article  CAS  Google Scholar 

  • Jenner P, Rupniak NM, Rose S, Kelly E, Kilpatrick G, Lees A, Marsden CD (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50(1–3):85–90

    CAS  PubMed  Google Scholar 

  • Jenner P, Zeng BY, Smith LA, Pearce RK, Tel B, Chancharme L, Moachon G (2000) Antiparkinsonian and neuroprotective effects of modafinil in the mptp-treated common marmoset. Exp Brain Res 133(2):178–188

    CAS  PubMed  Google Scholar 

  • Johnston LC, Jackson MJ, Rose S, McCreary AC, Jenner P (2010) Pardoprunox reverses motor deficits but induces only mild dyskinesia in MPTP-treated common marmosets. Mov Disord 25(13):2059–2066. https://doi.org/10.1002/mds.23249

    Article  PubMed  Google Scholar 

  • Jones CA, Johnston LC, Jackson MJ, Smith LA, van Scharrenburg G, Rose S, Jenner PG, McCreary AC (2010) An in vivo pharmacological evaluation of pardoprunox (SLV308)—a novel combined dopamine D(2)/D(3) receptor partial agonist and 5-HT(1A) receptor agonist with efficacy in experimental models of Parkinson’s disease. Eur Neuropsychopharmacol 20(8):582–593. https://doi.org/10.1016/j.euroneuro.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (1998a) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43(4):507–513. https://doi.org/10.1002/ana.410430415

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Tashiro T, Kuwana Y, Jenner P (1998b) Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. NeuroReport 9(12):2857–2860

    CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with l-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162(2):321–327. https://doi.org/10.1006/exnr.2000.7350

    Article  CAS  PubMed  Google Scholar 

  • Klawans HL Jr, Weiner WJ (1974) Attempted use of haloperidol in the treatment of l-dopa induced dyskinesias. J Neurol Neurosurg Psychiatry 37(4):427–430

    PubMed  PubMed Central  Google Scholar 

  • Ko WK, Camus SM, Li Q, Yang J, McGuire S, Pioli EY, Bezard E (2016) An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 110(Pt A):48–58. https://doi.org/10.1016/j.neuropharm.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  • Kobylecki C, Hill MP, Crossman AR, Ravenscroft P (2011) Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson’s disease. Mov Disord 26(13):2354–2363. https://doi.org/10.1002/mds.23867

    Article  PubMed  Google Scholar 

  • Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, Silverdale MA (2014) Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord 20(4):452–455. https://doi.org/10.1016/j.parkreldis.2014.01.016

    Article  PubMed  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715. https://doi.org/10.1038/nrd1470

    Article  CAS  PubMed  Google Scholar 

  • Kulisevsky J, Pagonabarraga J, Pascual-Sedano B, Gironell A, Garcia-Sanchez C, Martinez-Corral M (2008) Motor changes during sertraline treatment in depressed patients with Parkinson’ disease*. Eur J Neurol 15(9):953–959. https://doi.org/10.1111/j.1468-1331.2008.02218.x

    Article  CAS  PubMed  Google Scholar 

  • Lange KW, Loschmann PA, Wachtel H, Horowski R, Jahnig P, Jenner P, Marsden CD (1992) Terguride stimulates locomotor activity at 2 months but not 10 months after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets. Eur J Pharmacol 212(2–3):247–252

    CAS  PubMed  Google Scholar 

  • Lees AJ, Lander CM, Stern GM (1978) Tiapride and sulpiride in Parkinson’s disease. Lancet 2(8101):1205

    CAS  PubMed  Google Scholar 

  • LewinGroup (2019) Economic burden and future impact of Parkinson’s disease. https://www.parkinsonorg/sites/default/files/2019%2520Parkinson%27s%2520Economic%2520Burden%2520Study%2520-%2520FINALpdf . Accessed 31 Mar 2020

  • Lewitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N, Leinonen M, Savola JM (2012) Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology 79(2):163–169. https://doi.org/10.1212/WNL.0b013e31825f0451

    Article  CAS  PubMed  Google Scholar 

  • Lindeboom SF, Lakke JP (1978) Deanol and physostigmine in the treatment of l-dopa-induced dyskinesias. Acta Neurol Scand 58(2):134–138

    CAS  PubMed  Google Scholar 

  • Loschmann PA, Smith LA, Lange KW, Jahnig P, Jenner P, Marsden CD (1992) Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology 109(1–2):49–56

    CAS  PubMed  Google Scholar 

  • Manson AJ, Iakovidou E, Lees AJ (2000) Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 15(2):336–337

    CAS  PubMed  Google Scholar 

  • Manson AJ, Katzenschlager R, Hobart J, Lees AJ (2001) High dose naltrexone for dyskinesias induced by levodopa. J Neurol Neurosurg Psychiatry 70(4):554–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maratos EC, Jackson MJ, Pearce RK, Jenner P (2001) Antiparkinsonian activity and dyskinesia risk of ropinirole and l-DOPA combination therapy in drug naive MPTP-lesioned common marmosets (Callithrix jacchus). Mov Disord 16(4):631–641

    CAS  PubMed  Google Scholar 

  • Maratos EC, Jackson MJ, Pearce RK, Cannizzaro C, Jenner P (2003) Both short- and long-acting D-1/D-2 dopamine agonists induce less dyskinesia than l-DOPA in the MPTP-lesioned common marmoset (Callithrix jacchus). Exp Neurol 179(1):90–102

    CAS  PubMed  Google Scholar 

  • Marino S, Sessa E, Di Lorenzo G, Digangi G, Alagna A, Bramanti P, Di Bella P (2008) Sertraline in the treatment of depressive disorders in patients with Parkinson’s disease. Neurol Sci 29(6):391–395. https://doi.org/10.1007/s10072-008-1021-3

    Article  PubMed  Google Scholar 

  • Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, Abbott RD, Savica R, Van Den Eeden SK, Willis AW, Tanner CM, Parkinson's Foundation PG (2018) Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis 4:21. https://doi.org/10.1038/s41531-018-0058-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martignoni E, Pacchetti C, Aufdembrinke B, Godi L, Albani G, Mancini F, Nappi G (1995) Terguride in stable Parkinson’s disease. Funct Neurol 10(3):143–146

    CAS  PubMed  Google Scholar 

  • Meco G, Fabrizio E, Di Rezze S, Alessandri A, Pratesi L (2003) Mirtazapine in l-dopa-induced dyskinesias. Clin Neuropharmacol 26(4):179–181

    CAS  PubMed  Google Scholar 

  • Millan MJ, Di Cara B, Hill M, Jackson M, Joyce JN, Brotchie J, McGuire S, Crossman A, Smith L, Jenner P, Gobert A, Peglion JL, Brocco M (2004) S32504, a novel naphtoxazine agonist at dopamine D3/D2 receptors: II. Actions in rodent, primate, and cellular models of antiparkinsonian activity in comparison to ropinirole. J Pharmacol Exp Ther 309(3):921–935. https://doi.org/10.1124/jpet.103.062414

    Article  CAS  PubMed  Google Scholar 

  • Mohs RC, Greig NH (2017) Drug discovery and development: role of basic biological research. Alzheimers Dement (N Y) 3(4):651–657. https://doi.org/10.1016/j.trci.2017.10.005

    Article  Google Scholar 

  • Nagata T, Shinagawa S, Tagai K, Nakayama K (2013) A case in which mirtazapine reduced auditory hallucinations in a patient with Parkinson disease. Int Psychogeriatr IPA 25(7):1199–1201. https://doi.org/10.1017/S1041610212002037

    Article  Google Scholar 

  • Nash JE, Ravenscroft P, McGuire S, Crossman AR, Menniti FS, Brotchie JM (2004) The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates l-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of l-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 188(2):471–479. https://doi.org/10.1016/j.expneurol.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1985) The dopamine D2 agonist LY 141865, but not the D1 agonist SKF 38393, reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Lett 57(1):37–41

    CAS  PubMed  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1988) The D1 agonist SKF 38393 inhibits the antiparkinsonian activity of the D2 agonist LY 171555 in the MPTP-treated marmoset. Neurosci Lett 93(2–3):275–280

    CAS  PubMed  Google Scholar 

  • Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS, Landen JW (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 23(13):1860–1866. https://doi.org/10.1002/mds.22169

    Article  PubMed  PubMed Central  Google Scholar 

  • Park DM, Findley LJ, Teychenne PF (1977) Nomifensine in parkinsonism. Br J Clin Pharmacol 4(Suppl 2):185S–186S

    PubMed Central  Google Scholar 

  • Park DM, Findley LJ, Hanks G, Sandler M (1981) Nomifensine: effect in Parkinsonian patients not receiving levodopa. J Neurol Neurosurg Psychiatry 44(4):352–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214. https://doi.org/10.1038/nrd3078

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD (1995) Chronic l-DOPA administration induces dyskinesias in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord 10(6):731–740. https://doi.org/10.1002/mds.870100606

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Banerji T, Jenner P, Marsden CD (1998) De novo administration of ropinirole and bromocriptine induces less dyskinesia than l-dopa in the MPTP-treated marmoset. Mov Disord 13(2):234–241. https://doi.org/10.1002/mds.870130207

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Jackson M, Britton DR, Shiosaki K, Jenner P, Marsden CD (1999) Actions of the D1 agonists A-77636 and A-86929 on locomotion and dyskinesia in MPTP-treated l-dopa-primed common marmosets. Psychopharmacology 142(1):51–60

    CAS  PubMed  Google Scholar 

  • Pearce RK, Smith LA, Jackson MJ, Banerji T, Scheel-Kruger J, Jenner P (2002) The monoamine reuptake blocker brasofensine reverses akinesia without dyskinesia in MPTP-treated and levodopa-primed common marmosets. Mov Disord 17(5):877–886. https://doi.org/10.1002/mds.10238

    Article  PubMed  Google Scholar 

  • Postma JU, Van Tilburg W (1975) Visual hallucinations and delirium during treatment with amantadine (Symmetrel). J Am Geriatr Soc 23(5):212–215

    CAS  PubMed  Google Scholar 

  • Rascol O, Fabre N, Blin O, Poulik J, Sabatini U, Senard JM, Ane M, Montastruc JL, Rascol A (1994) Naltrexone, an opiate antagonist, fails to modify motor symptoms in patients with Parkinson’s disease. Mov Disord 9(4):437–440. https://doi.org/10.1002/mds.870090410

    Article  CAS  PubMed  Google Scholar 

  • Rascol O, Blin O, Thalamas C, Descombes S, Soubrouillard C, Azulay P, Fabre N, Viallet F, Lafnitzegger K, Wright S, Carter JH, Nutt JG (1999) ABT-431, a D1 receptor agonist prodrug, has efficacy in Parkinson's disease. Ann Neurol 45(6):736–741

    CAS  PubMed  Google Scholar 

  • Rascol O, Arnulf I, Peyro-Saint Paul H, Brefel-Courbon C, Vidailhet M, Thalamas C, Bonnet AM, Descombes S, Bejjani B, Fabre N, Montastruc JL, Agid Y (2001a) Idazoxan, an alpha-2 antagonist, and l-DOPA-induced dyskinesias in patients with Parkinson's disease. Mov Disord 16(4):708–713

    CAS  PubMed  Google Scholar 

  • Rascol O, Nutt JG, Blin O, Goetz CG, Trugman JM, Soubrouillard C, Carter JH, Currie LJ, Fabre N, Thalamas C, Giardina WW, Wright S (2001b) Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 58(2):249–254

    CAS  PubMed  Google Scholar 

  • Rascol O, Bronzova J, Hauser RA, Lang AE, Sampaio C, Theeuwes A, van de Witte SV (2012) Pardoprunox as adjunct therapy to levodopa in patients with Parkinson’s disease experiencing motor fluctuations: results of a double-blind, randomized, placebo-controlled, trial. Parkinsonism Relat Disord 18(4):370–376. https://doi.org/10.1016/j.parkreldis.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  • Rose S, Scheller DK, Breidenbach A, Smith L, Jackson M, Stockwell K, Jenner P (2007) Plasma levels of rotigotine and the reversal of motor deficits in MPTP-treated primates. Behav Pharmacol 18(2):155–160. https://doi.org/10.1097/FBP.0b013e3280ebb400

    Article  CAS  PubMed  Google Scholar 

  • Sampaio C, Bronzova J, Hauser RA, Lang AE, Rascol O, van de Witte SV, Theeuwes AA, Rembrandt/Vermeer Study G (2011) Pardoprunox in early Parkinson’s disease: results from 2 large, randomized double-blind trials. Mov Disord 26(8):1464–1476. https://doi.org/10.1002/mds.23590

    Article  PubMed  Google Scholar 

  • Savola JM, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG, Fox SH, Crossman AR, Brotchie JM (2003) Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 18(8):872–883. https://doi.org/10.1002/mds.10464

    Article  PubMed  Google Scholar 

  • Schrag A, Jahanshahi M, Quinn N (2000a) How does Parkinson’s disease affect quality of life? A comparison with quality of life in the general population. Mov Disord 15(6):1112–1118. https://doi.org/10.1002/1531-8257(200011)15:6<1112:aid-mds1008>3.0.co;2-a

    Article  CAS  PubMed  Google Scholar 

  • Schrag A, Jahanshahi M, Quinn N (2000b) What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry 69(3):308–312. https://doi.org/10.1136/jnnp.69.3.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seppi K, Weintraub D, Coelho M, Perez-Lloret S, Fox SH, Katzenschlager R, Hametner EM, Poewe W, Rascol O, Goetz CG, Sampaio C (2011) The movement disorder society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord 26(Suppl 3):S42–80. https://doi.org/10.1002/mds.23884

    Article  PubMed  PubMed Central  Google Scholar 

  • Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, Weintraub D, Sampaio C, the collaborators of the Parkinson's Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine C (2019) Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord 34(2):180–198. https://doi.org/10.1002/mds.27602

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiosaki K, Jenner P, Asin KE, Britton DR, Lin CW, Michaelides M, Smith L, Bianchi B, Didomenico S, Hodges L, Hong Y, Mahan L, Mikusa J, Miller T, Nikkel A, Stashko M, Witte D, Williams M (1996) ABT-431: the diacetyl prodrug of A-86929, a potent and selective dopamine D1 receptor agonist: in vitro characterization and effects in animal models of Parkinson's disease. J Pharmacol Exp Ther 276(1):150–160

    CAS  PubMed  Google Scholar 

  • Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM (2001) Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 57(11):2108–2111

    CAS  PubMed  Google Scholar 

  • Silverdale MA, Nicholson SL, Ravenscroft P, Crossman AR, Millan MJ, Brotchie JM (2004) Selective blockade of D(3) dopamine receptors enhances the anti-parkinsonian properties of ropinirole and levodopa in the MPTP-lesioned primate. Exp Neurol 188(1):128–138. https://doi.org/10.1016/j.expneurol.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  • Silverdale MA, Nicholson SL, Crossman AR, Brotchie JM (2005) Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord 20(4):403–409. https://doi.org/10.1002/mds.20345

    Article  PubMed  Google Scholar 

  • Simon N, Micallef J, Reynier JC, Lesourd M, Witjas T, Alicherif A, Azulay JP, Blin O (2005) End-of-dose akinesia after a single intravenous infusion of the dopaminergic agonist piribedil in Parkinson’s disease patients: a pharmacokinetic/pharmacodynamic, randomized, double-blind study. Mov Disord 20(7):803–809. https://doi.org/10.1002/mds.20400

    Article  PubMed  Google Scholar 

  • Smith L, De Salvia M, Jenner P, Marsden CD (1996) An appraisal of the antiparkinsonian activity of piribedil in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmosets. Mov Disord 11(2):125–135. https://doi.org/10.1002/mds.870110203

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Gordin A, Jenner P, Marsden CD (1997) Entacapone enhances levodopa-induced reversal of motor disability in MPTP-treated common marmosets. Mov Disord 12(6):935–945. https://doi.org/10.1002/mds.870120616

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Jackson MG, Bonhomme C, Chezaubernard C, Pearce RK, Jenner P (2000) Transdermal administration of piribedil reverses MPTP-induced motor deficits in the common marmoset. Clin Neuropharmacol 23(3):133–142

    CAS  PubMed  Google Scholar 

  • Smith LA, Tel BC, Jackson MJ, Hansard MJ, Braceras R, Bonhomme C, Chezaubernard C, Del Signore S, Rose S, Jenner P (2002) Repeated administration of piribedil induces less dyskinesia than l-dopa in MPTP-treated common marmosets: a behavioural and biochemical investigation. Mov Disord 17(5):887–901. https://doi.org/10.1002/mds.10200

    Article  PubMed  Google Scholar 

  • Smith LA, Jackson MJ, Hansard MJ, Maratos E, Jenner P (2003) Effect of pulsatile administration of levodopa on dyskinesia induction in drug-naive MPTP-treated common marmosets: effect of dose, frequency of administration, and brain exposure. Mov Disord 18(5):487–495. https://doi.org/10.1002/mds.10394

    Article  PubMed  Google Scholar 

  • Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W, Jenner P (2005) Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov Disord 20(3):306–314. https://doi.org/10.1002/mds.20317

    Article  PubMed  Google Scholar 

  • Smith LA, Jackson MJ, Johnston L, Kuoppamaki M, Rose S, Al-Barghouthy G, Del Signore S, Jenner P (2006) Switching from levodopa to the long-acting dopamine D2/D3 agonist piribedil reduces the expression of dyskinesia while maintaining effective motor activity in MPTP-treated primates. Clin Neuropharmacol 29(3):112–125. https://doi.org/10.1097/01.WNF.0000220818.71231.DF

    Article  CAS  PubMed  Google Scholar 

  • Stathis P, Konitsiotis S, Tagaris G, Peterson D (2011) Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 26(2):264–270. https://doi.org/10.1002/mds.23355

    Article  CAS  PubMed  Google Scholar 

  • Stockwell KA, Virley DJ, Perren M, Iravani MM, Jackson MJ, Rose S, Jenner P (2008) Continuous delivery of ropinirole reverses motor deficits without dyskinesia induction in MPTP-treated common marmosets. Exp Neurol 211(1):172–179. https://doi.org/10.1016/j.expneurol.2008.01.019

    Article  CAS  PubMed  Google Scholar 

  • Stockwell KA, Scheller D, Rose S, Jackson MJ, Tayarani-Binazir K, Iravani MM, Smith LA, Olanow CW, Jenner P (2009) Continuous administration of rotigotine to MPTP-treated common marmosets enhances anti-parkinsonian activity and reduces dyskinesia induction. Exp Neurol 219(2):533–542. https://doi.org/10.1016/j.expneurol.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  • Stockwell KA, Scheller DK, Smith LA, Rose S, Iravani MM, Jackson MJ, Jenner P (2010) Continuous rotigotine administration reduces dyskinesia resulting from pulsatile treatment with rotigotine or l-DOPA in MPTP-treated common marmosets. Exp Neurol 221(1):79–85. https://doi.org/10.1016/j.expneurol.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  • Tagai K, Nagata T, Shinagawa S, Tsuno N, Ozone M, Nakayama K (2013) Mirtazapine improves visual hallucinations in Parkinson’s disease: a case report. Psychogeriatrics 13(2):103–107. https://doi.org/10.1111/j.1479-8301.2012.00432.x

    Article  PubMed  Google Scholar 

  • Tarsy D, Leopold N, Sax DS (1974) Physostigmine in choreiform movement disorders. Neurology 24(1):28–33

    CAS  PubMed  Google Scholar 

  • Tayarani-Binazir K, Jackson MJ, Rose S, McCreary AC, Jenner P (2010a) The partial dopamine agonist pardoprunox (SLV308) administered in combination with l-dopa improves efficacy and decreases dyskinesia in MPTP treated common marmosets. Exp Neurol 226(2):320–327. https://doi.org/10.1016/j.expneurol.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  • Tayarani-Binazir KA, Jackson MJ, Rose S, Olanow CW, Jenner P (2010b) Pramipexole combined with levodopa improves motor function but reduces dyskinesia in MPTP-treated common marmosets. Mov Disord 25(3):377–384. https://doi.org/10.1002/mds.22960

    Article  PubMed  Google Scholar 

  • Temlett JA, Chong PN, Oertel WH, Jenner P, Marsden CD (1988) The D-1 dopamine receptor partial agonist, CY 208–243, exhibits antiparkinsonian activity in the MPTP-treated marmoset. Eur J Pharmacol 156(2):197–206

    CAS  PubMed  Google Scholar 

  • Temlett JA, Quinn NP, Jenner PG, Marsden CD, Pourcher E, Bonnet AM, Agid Y, Markstein R, Lataste X (1989) Antiparkinsonian activity of CY 208–243, a partial D-1 dopamine receptor agonist, in MPTP-treated marmosets and patients with Parkinson's disease. Mov Disord 4(3):261–265. https://doi.org/10.1002/mds.870040307

    Article  CAS  PubMed  Google Scholar 

  • Teychenne PF, Park DM, Findley LJ, Rose FC, Calne DB (1976) Nomifensine in parkinsonism. J Neurol Neurosurg Psychiatry 39(12):1219–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder SA, Jackson M, Jenner P (2000) The effects of central aromatic amino acid DOPA decarboxylase inhibition on the motor actions of l-DOPA and dopamine agonists in MPTP-treated primates. Br J Pharmacol 129(7):1355–1364. https://doi.org/10.1038/sj.bjp.0703189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsui JK, Wolters EC, Peppard RF, Calne DB (1989) A double-blind, placebo-controlled, dose-ranging study to investigate the safety and efficacy of CY 208–243 in patients with Parkinson's disease. Neurology 39(6):856–858

    CAS  PubMed  Google Scholar 

  • Tyne HL, Taylor J, Baker GA, Steiger MJ (2010) Modafinil for Parkinson’s disease fatigue. J Neurol 257(3):452–456. https://doi.org/10.1007/s00415-009-5351-8

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Tashiro T, Kawai-Uchida M, Mori A, Jenner P, Kanda T (2014) Adenosine A(2)A-receptor antagonist istradefylline enhances the motor response of l-DOPA without worsening dyskinesia in MPTP-treated common marmosets. J Pharmacol Sci 124(4):480–485

    CAS  PubMed  Google Scholar 

  • Uchida S, Soshiroda K, Okita E, Kawai-Uchida M, Mori A, Jenner P, Kanda T (2015a) The adenosine A2A receptor antagonist, istradefylline enhances anti-parkinsonian activity induced by combined treatment with low doses of l-DOPA and dopamine agonists in MPTP-treated common marmosets. Eur J Pharmacol 766:25–30. https://doi.org/10.1016/j.ejphar.2015.09.028

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Soshiroda K, Okita E, Kawai-Uchida M, Mori A, Jenner P, Kanda T (2015b) The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets. Eur J Pharmacol 747:160–165. https://doi.org/10.1016/j.ejphar.2014.11.038

    Article  CAS  PubMed  Google Scholar 

  • van Vliet SA, Blezer EL, Jongsma MJ, Vanwersch RA, Olivier B, Philippens IH (2008) Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy. Brain Res 1189:219–228. https://doi.org/10.1016/j.brainres.2007.10.059

    Article  CAS  PubMed  Google Scholar 

  • Veyres N, Hamadjida A, Huot P (2018) Predictive value of parkinsonian primates in pharmacologic studies: a comparison between the macaque, marmoset, and squirrel monkey. J Pharmacol Exp Ther 365(2):379–397. https://doi.org/10.1124/jpet.117.247171

    Article  CAS  PubMed  Google Scholar 

  • Visanji NP, Gomez-Ramirez J, Johnston TH, Pires D, Voon V, Brotchie JM, Fox SH (2006) Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Mov Disord 21(11):1879–1891. https://doi.org/10.1002/mds.21073

    Article  PubMed  Google Scholar 

  • Wolz M, Lohle M, Strecker K, Schwanebeck U, Schneider C, Reichmann H, Grahlert X, Schwarz J, Storch A (2010) Levetiracetam for levodopa-induced dyskinesia in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. J Neural Transm 117(11):1279–1286. https://doi.org/10.1007/s00702-010-0472-x

    Article  CAS  PubMed  Google Scholar 

  • Wong KK, Alty JE, Goy AG, Raghav S, Reutens DC, Kempster PA (2011) A randomized, double-blind, placebo-controlled trial of levetiracetam for dyskinesia in Parkinson’s disease. Mov Disord 26(8):1552–1555. https://doi.org/10.1002/mds.23687

    Article  PubMed  Google Scholar 

  • Zubair M, Jackson MJ, Tayarani-Binazir K, Stockwell KA, Smith LA, Rose S, Olanow W, Jenner P (2007) The administration of entacapone prevents l-dopa-induced dyskinesia when added to dopamine agonist therapy in MPTP-treated primates. Exp Neurol 208(2):177–184. https://doi.org/10.1016/j.expneurol.2007.05.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

PH has received research support from Parkinson Canada, Parkinson Québec, Fonds de Recherche Québec—Santé, the Weston Brain Institute, the Michael J Fox Foundation for Parkinson’s Research, the Natural Sciences and Engineering Research Council of Canada and Healthy Brains for Healthy Lives.

Author information

Authors and Affiliations

Authors

Contributions

FB reviewed the manuscript. PH wrote the manuscript.

Corresponding author

Correspondence to Philippe Huot.

Ethics declarations

Conflict of interest

Drs. Beaudry and Huot conducted research on the normal and parkinsonian marmosets.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaudry, F., Huot, P. The MPTP-lesioned marmoset model of Parkinson’s disease: proposed efficacy thresholds that may potentially predict successful clinical trial results. J Neural Transm 127, 1343–1358 (2020). https://doi.org/10.1007/s00702-020-02247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-020-02247-2

Keywords

Navigation