Skip to main content
Log in

A New Nussbaum-Type Function and its Application in the Control of Uncertain Strict-Feedback Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this study, an adaptive fuzzy output tracking control scheme is proposed for uncertain strict-feedback systems with unknown control directions. Nussbaum-type functions are designed, with which the effects of multiple unknown control directions can be handled. Compared with the existing Nussbaum-type functions dealing with the same problem, the proposed Nussbaum-type functions have smaller amplitudes that are more conducive to the design of the controller. Fuzzy functions are used to estimate the unknown terms by combining adaptive laws with backstepping procedure. Adaptive fuzzy controller is constructed to guarantee that the output tracking error system is asymptotically stable and all states in the closed-loop system are bounded. Finally, numerical simulation studies are presented to illustrate the effectiveness of the proposed criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li, H., Wang, J., Lam, H.K., Zhou, Q., Du, H.: Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1654–1663 (2016)

    Google Scholar 

  2. Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. cybern. 47(2), 403–414 (2016)

    Google Scholar 

  3. Zhou, Q., Wang, L., Wu, C., Li, H., Du, H.: Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 1–12 (2016)

    Google Scholar 

  4. Yin, S., Shi, P., Yang, H.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics. IEEE Trans. Cybern. 46(8), 1926–1938 (2015)

    Google Scholar 

  5. Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454, 30–45 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2209–2217 (2017)

    Google Scholar 

  7. Pan, Y., Wang, H., Li, X., Yu, H.: Adaptive command-filtered backstepping control of robot arms with compliant actuators. IEEE Trans. Control Syst. Technol. 26(3), 1149–1156 (2018)

    Google Scholar 

  8. Pan, Y., Li, X., Yu, H.: Efficient pid tracking control of robotic manipulators driven by compliant actuators. IEEE Trans. Control Syst. Technol. 27(2), 915–922 (2019)

    Google Scholar 

  9. Wu, J., Li, J., Chen, W.: Practical adaptive fuzzy tracking control for a class of perturbed nonlinear systems with backlash nonlinearity. Inf. Sci. 420, 517–531 (2017)

    MATH  Google Scholar 

  10. Zhao, L., Yang, G.H.: Fuzzy adaptive fault-tolerant control of multi-agent systems with interactions between physical coupling graph and communication graph. Fuzzy Sets Syst. 385, 20–38 (2020)

    MathSciNet  Google Scholar 

  11. Wang, H., Zou, Y., Liu, P.X., Liu, X.: Robust fuzzy adaptive funnel control of nonlinear systems with dynamic uncertainties. Neurocomputing 314, 299–309 (2018)

    Google Scholar 

  12. Zhang, Q., Dong, J.: Disturbance-observer-based adaptive fuzzy control for nonlinear state constrained systems with input saturation and input delay. Fuzzy Sets Syst. 392, 77–92 (2020)

    MathSciNet  Google Scholar 

  13. Su, H., Zhang, W.: Adaptive fuzzy control of mimo nonlinear systems with fuzzy dead zones. Appl. Soft Comput. J. 80, 700–711 (2019)

    MATH  Google Scholar 

  14. Qu, F., Tong, S., Li, Y.: Observer-based adaptive fuzzy output constrained control for uncertain nonlinear multi-agent systems. Inf. Sci. 467, 446–463 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Peng, J., Dubay, R.: Adaptive fuzzy backstepping control for a class of uncertain nonlinear strict-feedback systems based on dynamic surface control approach. Expert Syst. Appl. 120, 239–252 (2019)

    Google Scholar 

  16. Ji, N., Liu, J.: Vibration control for a flexible satellite with input constraint based on nussbaum function via backstepping method. Aerospace Sci. Technol. 77, 563–572 (2018)

    Google Scholar 

  17. Qi, X.: Spatial target path following control based on nussbaum gain method for underactuated underwater vehicle. Ocean Eng. 104, 680–685 (2015)

    Google Scholar 

  18. Hu, C., Zhou, X., Sun, B., Liu, W., Zong, Q.: Nussbaum-based fuzzy adaptive nonlinear fault-tolerant control for hypersonic vehicles with diverse actuator faults. Aerospace Sc. Technol. 71, 432–440 (2017)

    Google Scholar 

  19. Sun, L., Wang, X.: Nonlinear control for semi-active suspension with input constraints. IFAC PapersOnLine 51(31), 131–135 (2018)

    Google Scholar 

  20. Xu, B., Qi, R., Jiang, B., Yao, X.: Nussbaum gain adaptive fault tolerant control for hypersonic vehicles with uncertain parameters and actuator faults. IFAC PapersOnLine 50(1), 5256–5262 (2017)

    Google Scholar 

  21. Habibi, H., Nohooji, H.R., Howard, I.: Backstepping nussbaum gain dynamic surface control for a class of input and state constrained systems with actuator faults. Inf. Sci. 482, 27–46 (2019)

    MathSciNet  Google Scholar 

  22. Psillakis, H.E.: An extension of the georgiou-smith example: Boundedness and attractivity in the presence of unmodelled dynamics via nonlinear pi control. Syst. Control Lett. 92, 1–4 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Li, Y.-X., Yang, G.H.: Observer-based adaptive fuzzy quantized control of uncertain nonlinear systems with unknown control directions. Fuzzy Sets Syst. 371, 61–77 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Liu, C., Liu, X., Wang, H., Zhou, Y., Lu, S.: Observer-based adaptive fuzzy funnel control for strict-feedback nonlinear systems with unknown control coefficients. Neurocomputing 358, 467–478 (2019)

    Google Scholar 

  25. Wu, H., Liu, S., Cheng, C., Du, C.: Observer based adaptive double-layer fuzzy control for nonlinear systems with prescribed performance and unknown control direction. Fuzzy Sets Syst. 392, 93–114 (2020)

    MathSciNet  Google Scholar 

  26. Liu, X., Zhai, D., Li, T., Zhang, Q.: Fuzzy-approximation adaptive fault-tolerant control for nonlinear pure-feedback systems with unknown control directions and sensor failures. Fuzzy Sets Syst. 356, 28–43 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Shi, W., Yan, F., Li, B.: Adaptive fuzzy decentralized control for a class of nonlinear systems with different performance constraints. Fuzzy Sets Syst. 374, 1–22 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Shi, W., Li, B.: Adaptive fuzzy control for feedback linearizable mimo nonlinear systems with prescribed performance. Fuzzy Sets Syst. 344, 70–89 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Wang, N., Tong, S.: Observer-based adaptive fuzzy control of a class of mimo non-strict feedback nonlinear systems. J. Franklin Inst. 355(12), 4873–4896 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Sun, W., Xia, J., Zhuang, G., Huang, X., Shen, H.: Adaptive fuzzy asymptotically tracking control of full state constrained nonlinear system based on a novel nussbaum-type function. J. Franklin Inst. 356(4), 1810–1827 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Chen, Z.: Nussbaum functions in adaptive control with time-varying unknown control coefficients. Automatica 102, 72–79 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Y.J., Tong, S.: Barrier Lyapunov functions for nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76, 143–152 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Peng, J., Li, C., Ye, X.: Cooperative control of high-order nonlinear systems with unknown control directions. Syst. Control Lett. 113, 101–108 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Chen, C., Liu, Z., Zhang, Y., Chen, C.P., Xie, S.: Adaptive control of mimo mechanical systems with unknown actuator nonlinearities  based on the nussbaum gain approach. IEEE-CAA J. Automatica Sin. 3(1), 26–34 (2016)

    MathSciNet  Google Scholar 

  35. Huang, J., Wang, Q.-G.: Decentralized adaptive control of interconnected nonlinear systems with unknown control directions. ISA Trans.74, 60–66 (2018)

    Google Scholar 

  36. Huang, J., Wang, W., Wen, C., Zhou, J.: Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficients. Automatica 93, 98–105 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Automatic Control 56(7), 1672–1678 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Ding, Z.: Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain. Automatica 51, 348–355 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Chen, W., Li, X., Ren, W., Wen, C.: Adaptive consensus of multi-agent systems with unknown identical control directions based on a novel nussbaum-type function. IEEE Trans. Automatic Control 59(7), 1887–1892 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Chen, C., Liu, Z., Xie, K., Zhang, Y., Chen, C.P.: Asymptotic fuzzy neural network control for pure-feedback stochastic systems based on a semi-nussbaum function technique. IEEE Trans. Cybern. 47(9), 2448–2459 (2016)

    Google Scholar 

  41. Lee, H., Tomizuka, M.: Robust adaptive control using a universal approximator for siso nonlinear systems. IEEE Trans. Fuzzy Syst. 8(1), 95–106 (2000)

    Google Scholar 

  42. Kommuri, S.K., Rath, J.J., Veluvolu, K.C.: Sliding-mode-based observer controller structure for fault-resilient control in dc servomotors. IEEE Trans. Ind. Electronics 65(1), 918–929 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61967001), the Natural Science Foundation of Anhui Province of China (1808085MF181), the Anhui Province Excellent Talents Project under Grant gxyq (2018065) and the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (KJ2016A666, KJ2019A0696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Liu, H., Li, Y. et al. A New Nussbaum-Type Function and its Application in the Control of Uncertain Strict-Feedback Systems. Int. J. Fuzzy Syst. 22, 2284–2299 (2020). https://doi.org/10.1007/s40815-020-00909-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00909-7

Keywords

Navigation