Skip to main content
Log in

Melting Temperature of Individual Electrospun Poly(vinylidene fluoride) Fibers Studied by AFM-based Local Thermal Analysis

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermal properties such as melting temperature can well reflect the microstructure of the polymer material, and have practical implications in the application of nanofibers. In this work, we investigated the melting temperature of individual electrospun poly(vinylidene fluoride) (PVDF) nanofibers with diameters ranging from smaller than 200 nm to greater than 2 µm by the local thermal analysis technique. The PVDF fibers obtained under four different conditions were found to crystallize into α and β phases, and the fiber mats showed typical values in the crystallinity and Tm with no significant difference among the four. However, analyses at single fiber level revealed broad distribution in diameter and Tm for the fibers produced under identical electrospinning condition. The Tm of individual nanofibers was found to remain constant at large diameters and increase quickly when reducing the fiber diameter toward the nanoscale, and Tm values of 220–230 °C were observed for the thinnest nanofibers, much higher than the typical values reported for bulk PVDF. The Tm and molecular orientation at different positions along a beaded fiber were analyzed, showing a similar distribution pattern with a minimum at the bead center and higher values when moving toward both directions. The results indicate that molecular orientation is the driving mechanism for the observed correlation between the Tm and the diameter of the nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reneker, D. H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223.

    CAS  Google Scholar 

  2. Gopal, R.; Kaur, S.; Ma, Z.; Chan, C.; Ramakrishna, S.; Matsuura, T. Electrospun nanofibrous filtration membrane. J. Membr. Sci. 2006, 281, 581–586.

    CAS  Google Scholar 

  3. Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S. K.; Zhang, F.; Huang, C. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017, 302, 1600353.

    Google Scholar 

  4. Al-Attabi, R.; Dumée, L. F.; Kong, L.; Schütz, J. A.; Morsi, Y. High efficiency poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration. Adv. Eng. Mater. 2018, 20, 1700572.

    Google Scholar 

  5. Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable electrospun fibers for drug delivery. J. Control. Release 2003, 92, 227–231.

    CAS  PubMed  Google Scholar 

  6. Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21.

    CAS  PubMed  Google Scholar 

  7. Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610.

    CAS  PubMed  Google Scholar 

  8. Sill, T. J.; von Recum, H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 0008, 29, 1989–2006.

    Google Scholar 

  9. Hu, J.; Kai, D.; Ye, H.; Tian, L.; Ding, X.; Ramakrishna, S.; Loh, X. J. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater. Sci. Eng. 2017, 70, 1089–1094.

    CAS  Google Scholar 

  10. Wong, S. C.; Baji, A.; Leng, S. Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone). Polymer 2008, 49, 4713–4722.

    CAS  Google Scholar 

  11. Pai, C. L.; Boyce, M. C.; Rutledge, G. C. Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter. Polymer 2011, 52, 2295–2301.

    CAS  Google Scholar 

  12. Greenfeld, I.; Sui, X.; Wagner, H. D. Stiffness, strength, and toughness of electrospun nanofibers: effect of flow-induced molecular orientation. Macromolecules 2016, 49, 6518–6530.

    CAS  Google Scholar 

  13. Mathew, G.; Hong, J. P.; Rhee, J. M.; Leo, D. J.; Nah, C. Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylene terephthalate) fibers. J. Appl. Polym. Sci. 2006, 101, 2017–2021.

    CAS  Google Scholar 

  14. Chew, S. Y.; Hufnagel, T. C.; Lim, C. T.; Leong, K. W. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology 2006, 17, 3880–3891.

    PubMed  PubMed Central  Google Scholar 

  15. Chan, K. H. K.; Wong, S. Y.; Li, X.; Zhang, Y. Z.; Lim, P. C.; Lim, C. T.; Kotaki, M.; He, C. B. Effect of molecular orientation on mechanical property of single electrospun fiber of poly. J. Phys. Chem. B 2009, 113, 13179–13185.

    CAS  PubMed  Google Scholar 

  16. Arinstein, A.; Zussman, E. Electrospun polymer nanofibers: mechanical and thermodynamic perspectives. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 691–707.

    CAS  Google Scholar 

  17. Stachewicz, U.; Bailey, R. J.; Wang, W.; Barber, A. H. Size dependent mechanical properties of electrospun polymer fibers from a composite structure. Polymer 2012, 53, 5132–5137.

    CAS  Google Scholar 

  18. Richard-Lacroix, M.; Pellerin, C. Orientation and partial disentanglement in individual electrospun fibers: diameter dependence and correlation with mechanical properties. Macromolecules 2015, 48, 4511–4519.

    CAS  Google Scholar 

  19. Papkov, D.; Zou, Y.; Andalib, M. N.; Goponenko, A.; Cheng, S. Z. D.; Dzenis, Y. A. Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 2013, 7, 3324–3331.

    CAS  PubMed  Google Scholar 

  20. Wang, W.; Barber, A. H. Diameter-dependent melting behaviour in electrospun polymer fibres. Nanotechnology 2010, 21, 225701.

    PubMed  Google Scholar 

  21. Doshi, J.; Reneker, D. H. Electrospinning process and applications of electrospun fibers. J. Electrost. 1995, 35, 151–160.

    CAS  Google Scholar 

  22. Wang, X.; Zhao, H.; Turng, L. S.; Li, Q. Crystalline morphology of electrospun poly(ε-caprolactone) (PCL) nanofibers. Ind. Eng. Chem. Res. 2013, 52, 4939–4949.

    CAS  Google Scholar 

  23. Kołbuk, D.; Sajkiewicz, P.; Kowalewski, T. A. Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy. Eur. Polym. J. 2012, 48, 275–283.

    Google Scholar 

  24. Damaraju, S. M.; Wu, S.; Jaffe, M.; Arinzeh, T. L. Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed. Mater. 2013, 8, 045007.

    PubMed  Google Scholar 

  25. Liu, Y.; Li, C.; Chen, S.; Wachtel, E.; Koga, T.; Sokolov, J.C.; Rafailovich, M. H. Electrospinning of poly(ethylene-co-vinyl acetate)/clay nanocomposite fibers. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 2501–2508.

    CAS  Google Scholar 

  26. Arinstein, A.; Liu, Y.; Rafailovich, M.; Zussman, E. Shifting of the melting point for semi-crystalline polymer nanofibers. Europhys. Lett. 2011, 93, 46001.

    Google Scholar 

  27. Liu, Y.; Chen, S.; Zussman, E.; Korach, C. S.; Zhao, W.; Rafailovich, M. Diameter-dependent modulus and melting behavior in electrospun semicrystalline polymer fibers. Macromolecules 2011, 44, 4439–4444.

    CAS  Google Scholar 

  28. Zheng, Y. R.; Zhang, J.; Sun, X. L.; Li, H. H.; Ren, Z. J.; Yan, S. K. Enhanced αγ′ transition of poly(vinylidene fluoride) by step crystallization and subsequent annealing. Chinese J. Polym. Sci. 2018, 36, 598–603.

    CAS  Google Scholar 

  29. Baji, A.; Mai, Y. W.; Li, Q.; Liu, Y. Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale 2011, 3, 3068–3071.

    CAS  PubMed  Google Scholar 

  30. Hansen, B. J.; Liu, Y.; Yang, R.; Wang, Z. L. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 2010, 4, 3647–3652.

    CAS  PubMed  Google Scholar 

  31. Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

    CAS  PubMed  Google Scholar 

  32. Zhou, J.; Berry, B.; Douglas, J. F.; Karim, A.; Snyder, C. R.; Soles, C. Nanoscale thermal-mechanical probe determination of ‘softening transitions’ in thin polymer films. Nanotechnology 2008, 19, 495703.

    PubMed  Google Scholar 

  33. Wu, X.; Shi, S.; Yu, Z.; Russell, T. P.; Wang, D. AFM nanomechanical mapping and nanothermal analysis reveal enhanced crystallization at the surface of a semicrystalline polymer. Polymer 2018, 146, 188–195.

    CAS  Google Scholar 

  34. Middendorf, D.; Bindrich, U.; Mischnick, P.; Franke, K.; Heinz, V. AFM-based local thermal analysis is a suitable tool to characterize the impact of different grinding techniques on sucrose surface properties. J. Food Eng. 2018, 235, 50–58.

    CAS  Google Scholar 

  35. Ago, M., Jakes, J.E.; Johansson, L.; Park, S.; Rojas, O. J. Interfacial properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals. ACS Appl. Mater. Interfaces 2012, 4, 6849–6856.

    CAS  PubMed  Google Scholar 

  36. Wang, Z.; Sun, B.; Lu, X.; Wang, C.; Su, Z. Molecular orientation in individual electrospun nanofibers studied by polarized AFM-IR. Macromolecules 2019, 52, 9639–9645.

    CAS  Google Scholar 

  37. Chowdhury, M.; Stylios, G. Effect of experimental parameters on the morphology of electrospun Nylon 6 fibres. Int. J. Basic Appl. Sci. 2010, 10, 70–78.

    Google Scholar 

  38. Lin, J.; Ding, B.; Yu, J.; Hsieh, Y. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl. Mater. Interfaces 2010, 2, 521–528.

    CAS  PubMed  Google Scholar 

  39. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

    CAS  Google Scholar 

  40. Boccaccio, T.; Bottino, A.; Capannelli, G.; Piaggio, P. Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 2002, 210, 315–329.

    CAS  Google Scholar 

  41. Kochervinskii, V. V. The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russ. Chem. Rev. 1996, 65, 865–913.

    Google Scholar 

  42. Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004, 23, 791–796.

    CAS  Google Scholar 

  43. Imamura, R.; Silva, A. B.; Gregorio Jr., R. γ→β Phase transformation induced in poly(vinylidene fluoride) by stretching. J. Appl. Polym. Sci. 2008, 110, 3242–3246.

    CAS  Google Scholar 

  44. Gregorio Jr., R. Determination of the α, ε, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272–3279.

    CAS  Google Scholar 

  45. Esterly, D. M.; Love, B. J. Phase transformation to β-poly(vinylidene fluoride) by milling. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 91–97.

    CAS  Google Scholar 

  46. Gregorio, J. R.; Cestari, M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 859–870.

    CAS  Google Scholar 

  47. Lee, S. H.; Cho, H. H. Crystal structure and thermal properties of poly(vinylidene fluoride)-carbon fiber composite films with various drawing temperatures and speeds. Fibers Polym. 2010, 11, 1146–1151.

    CAS  Google Scholar 

  48. Nakagawa, K.; Ishida, Y. Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J. Polym. Sci., Polym. Phys. Ed. 1973, 11, 2153–2171.

    CAS  Google Scholar 

  49. Maccone, P.; Brinati, G.; Arcella, V. Environmental stress cracking of poly(vinylidene fluoride) in sodium hydroxide. Effect of chain regularity. Polym. Eng. Sci. 2000, 40, 761–767.

    CAS  Google Scholar 

  50. Zhao, S.; Wu, X.; Wang, L.; Huang, Y. Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. J. Appl. Polym. Sci. 2004, 91, 242–246.

    CAS  Google Scholar 

  51. Ero-Phillips, O.; Jenkins, M.; Stamboulis, A. Tailoring crystallinity of electrospun plla fibres by control of electrospinning parameters. Polymers 2012, 4, 1331–1348.

    CAS  Google Scholar 

  52. Nandi, A.K.; Mandelkern, L. The influence of chain structure on the equilibrium melting temperature of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 1991, 29, 1287–1297.

    CAS  Google Scholar 

  53. Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y. M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126.

    CAS  Google Scholar 

  54. Richard-Lacroix, M.; Pellerin, C. Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 2013, 46, 9473–9493.

    CAS  Google Scholar 

  55. Wang, C.; Tsou, S. Y.; Lin, H. S. Brill transition of nylon-6 in electrospun nanofibers. Colloid Polym. Sci. 2012, 290, 1799–1809.

    CAS  Google Scholar 

  56. Iguchi, M.; Tonami, H.; Kawai, T. Crystallization of polyethylene under molecular orientation. Kolloid-Z.u.Z.Polymere 1967, 221, 28–40.

    Google Scholar 

  57. Yan, J.; Xiao, C.; Wang, C.; Fu, H.; An, S.; Jiang, Y. Crystalline structure changes of poly(vinylidene fluoride) fibers during stretching process. Acta Polymerica Sinica (in Chinese) 2019, 50, 752–760.

    Google Scholar 

  58. Yoshioka, T.; Dersch, R.; Tsuji, M.; Schaper, A. K. Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy. Polymer 2010, 51, 2383–2389. https://doi.org/10.1007/s10118-020-2476-9

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21674118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Su.

Electronic Supplementary Information

10118_2020_2476_MOESM1_ESM.pdf

Melting Temperature of Individual Electrospun Poly(vinylidene fluoride) Fibers Studied by AFM-based Local Thermal Analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZQ., Zhong, ZX., Ma, YY. et al. Melting Temperature of Individual Electrospun Poly(vinylidene fluoride) Fibers Studied by AFM-based Local Thermal Analysis. Chin J Polym Sci 39, 219–227 (2021). https://doi.org/10.1007/s10118-020-2476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2476-9

Keywords

Navigation