Skip to main content
Log in

The Perturbed Riemann Problem for a Macroscopic Production Model with Chaplygin Gas

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The exact Riemann solutions for a macroscopic production model under the equation of state given by the Chaplygin gas are solved explicitly for all possible Riemann initial data. It is discovered interestingly that a composite hyperbolic wave is involved in Riemann solution under some specially designated initial conditions, which is made up of a rarefaction wave and a delta contact discontinuity attached on the wave front of the rarefaction wave. Furthermore, the constructions of global solutions to the perturbed Riemann problem for this system are also displayed in completely explicit forms when the initial data are taken to be three piecewise constant states under some suitable restrictive conditions by using the method of characteristics. During the process of constructing global solutions, the interactions of elementary waves are studied in detail. Moreover, it is proved rigorously that Riemann solutions are stable with respect to the specific small perturbations of Riemann initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armbruster, D., Degond, P., Ringhofer, C.: A model for the dynamics of large queuing metworks and supply chains. SIAM J. Appl. Math. 66, 896–920 (2006)

    Article  MathSciNet  Google Scholar 

  2. Herty, M., Klar, A., Piccoli, B.: Existence of solutions for supply chain models based on partial differential equations. SIAM J. Math. Anal. 39, 160–173 (2007)

    Article  MathSciNet  Google Scholar 

  3. Forestier-Coste, L., Gottlich, S., Herty, M.: Data-fitted second-order macroscopic production models. SIAM J. Appl. Math. 75, 999–1014 (2015)

    Article  MathSciNet  Google Scholar 

  4. Sun, M.: Singular solutions to the Riemann problem for a macroscopic production model. Z. Angew. Math. Mech. 97, 916–931 (2017)

    Article  MathSciNet  Google Scholar 

  5. Armbruster, D., Marthaler, D., Ringhofer, C.: Kinetic and fluid model heirarchies for supply chains. Multiscale Model. Simul. 2, 43–61 (2003)

    Article  MathSciNet  Google Scholar 

  6. Armbruster, D., Wienke, M.: Kinetic models and intrinsic timescales: simulation comparison for a 2nd order queueing model. Kinet. Relat. Models 12, 177–193 (2019)

    Article  MathSciNet  Google Scholar 

  7. Brenier, Y.: Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7, S326–S331 (2005)

    Article  MathSciNet  Google Scholar 

  8. Lai, G., Sheng, W., Zheng, Y.: Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions. Discrete Contin. Dyn. Syst. 31, 489–523 (2011)

    Article  MathSciNet  Google Scholar 

  9. Guo, L., Zhang, Y., Yin, G.: Interactions of delta shock waves for the Chaplygin gas equations with split delta functions. J. Math. Anal. Appl. 410, 190–201 (2014)

    Article  MathSciNet  Google Scholar 

  10. Shen, C.: The Riemann problem for the Chaplygin gas equations with a source term. Z. Angew. Math. Mech. 96, 681–695 (2016)

    Article  MathSciNet  Google Scholar 

  11. Shao, Z.: Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equations, Z. Angew. Math. Phys., 67 (2016), Article ID 66

  12. Pan, L., Han, X.: The Aw-Rascle traffic model with Chaplygin pressure. J. Math. Anal. Appl. 401, 379–387 (2013)

    Article  MathSciNet  Google Scholar 

  13. Zeidan, D., Romenski, E., Slaouti, A., Toro, E.F.: Numerical study of wave propagation in compressible two-phase flow. Int. J. Numer. Meth. Fluids 54, 393–417 (2007)

    Article  MathSciNet  Google Scholar 

  14. Goncalves, E., Hoarau, Y., Zeidan, D.: Simulation of shock-induced bubble collapse using a four-equation model. Shock Waves 29, 221–234 (2019)

    Article  Google Scholar 

  15. Zeidan, D., Bähr, P., Farber, P., Gräbel, J., Ueberholz, P.: Numerical investigation of a mixture two-phase flow model in two-dimensional space. Comput. Fluids 181, 90–106 (2019)

    Article  MathSciNet  Google Scholar 

  16. Toro, E.F.: Riemann solves and numerical methods for fluid dynamics: a practical introduction. Springer Science and Business Media, Berlin (2013)

    Google Scholar 

  17. Zeidan, D., Zhang, L.T., Goncalves, E.: High-resolution simulations for aerogel using two-phase flow equations and Godunov methods. Int. J. Appl. Mech. 12, 2050049 (2020)

    Article  Google Scholar 

  18. Zeidan, D., Touma, R.: On the computations of gas-solid mixture two-phase flow. Adv. Appl. Math. Mech. 6, 49–74 (2014)

    Article  MathSciNet  Google Scholar 

  19. Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. Am. Math. Soc. 280, 781–795 (1983)

    Article  MathSciNet  Google Scholar 

  20. Shen, C., Sun, M.: A distributional product approach to the delta shock wave solution for the one-dimensional zero-pressure gas dynamics system. Int. J. Non-linear Mech. 105, 105–122 (2018)

    Article  Google Scholar 

  21. R. De la cruz, M. Santos, : Delta shock waves for a system of Keyfitz-Kranzer type. Z. Angew. Math. Mech. 99, e201700251 (2019)

  22. Sheng, W., Zhang, T.: (1999) The Riemann problem for the transportation equations in gas dynamics. Mem. Amer. Math. Soc. 137(N654), AMS: Providence

  23. Chen, G.Q., Liu, H.: Formation of \(\delta \)-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34, 925–938 (2003)

    Article  MathSciNet  Google Scholar 

  24. Danilov, V.G., Shelkovich, V.M.: Dynamics of propagation and interaction of \(\delta \)-shock waves in conservation law systems. J. Differ. Equ. 211, 333–381 (2005)

    Article  MathSciNet  Google Scholar 

  25. Nedeljkov, M.: Shadow waves: entropies and interactions for delta and singular shocks. Arch. Ration. Mech. Anal. 197, 489–537 (2010)

    Article  MathSciNet  Google Scholar 

  26. Yang, H., Zhang, Y.: New developments of delta shock waves and its applications in systems of conservation laws. J. Differ. Equ. 252, 5951–5993 (2012)

    Article  MathSciNet  Google Scholar 

  27. Shen, C.: The asymptotic limits of Riemann solutions for the isentropic drift-flux model of compressible two-phase flows. Math. Meth. Appl. Sci. 43, 3673–3688 (2020)

    Article  MathSciNet  Google Scholar 

  28. Sun, M.: Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state. Nonlinear Anal. RWA 53, 103068 (2020)

    Article  MathSciNet  Google Scholar 

  29. Nedeljkov, M., Oberguggenberger, M.: Interactions of delta shock waves in a strictly hyperbolic system of conservation laws. J. Math. Anal. Appl. 344, 1143–1157 (2008)

    Article  MathSciNet  Google Scholar 

  30. Li, S., Shen, C.: Construction of global Riemann solutions with delta-type initial data for a thin film model with a perfectly soluble anti-surfactant solution. Int. J. Non linear Mech. 120, 103392 (2020)

    Article  Google Scholar 

  31. Li, S., Shen, C.: Measure-valued solutions to a non-strictly hyperbolic system with delta-type Riemann initial data. International Journal of Nonlinear Sciences and Numerical Simulation, https://doi.org/10.1515/ijnsns-2019-0069, in press

  32. Lai, G., Sheng, W.: Elementary wave interactions to the compressible Euler equations for Chaplygin gas in two dimensions. SIAM J. Appl. Math. 76, 2218–2242 (2016)

    Article  MathSciNet  Google Scholar 

  33. Raja Sekhar, T., Sharma, V.D.: Riemann problem and elementary wave interactions in isentropic magnetogasdynamics. Nonlinear Anal. RWA 11, 619–636 (2010)

    Article  MathSciNet  Google Scholar 

  34. Sun, M., Xin, J.: On the delta shock wave interactions for the isentropic Chaplygin gas system consisting of three scalar equations. Filomat 33, 5355–5373 (2019)

    Article  MathSciNet  Google Scholar 

  35. Sen, A., Sekhar, T.R., Sharma, V.D.: Wave interactions and stability of the Riemann solution for a strictly hyperbolic system of conservation laws. Q. Appl. Math. 75, 539–554 (2017)

    Article  MathSciNet  Google Scholar 

  36. Shen, C.: Delta shock wave solution for a symmetric Keyfitz-Kranzer system. Appl. Math. Lett. 77, 35–43 (2018)

    Article  MathSciNet  Google Scholar 

  37. Sun, M.: The singular solutions to a nonsymmetric system of Keyfitz-Kranzer type with initial data of Riemann type. Math. Meth. Appl. Sci. 43, 682–697 (2020)

    Article  MathSciNet  Google Scholar 

  38. Guo, L., Zhang, Y., Yin, G.: Interactions of delta shock waves for the relativistic Chaplygin gas equations with split delta functions. Math. Meth. Appl. Sci. 38, 2132–2148 (2015)

    Article  Google Scholar 

  39. Castaneda, P.: Embedded delta shocks. Heliyon 6, e04152 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Shen.

Additional information

Communicated by Norhashidah Hj. Mohd. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by Shandong Provincial Natural Science Foundation (ZR2019MA058).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Shen, C. The Perturbed Riemann Problem for a Macroscopic Production Model with Chaplygin Gas. Bull. Malays. Math. Sci. Soc. 44, 1195–1214 (2021). https://doi.org/10.1007/s40840-020-01003-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01003-9

Keywords

Mathematics Subject Classification

Navigation