1932

Abstract

Gall-inducing insects and nematodes engage in sophisticated interactions with their host plants. These parasites can induce major morphological and physiological changes in host roots, leaves, and other tissues. Sedentary endoparasitic nematodes, root-knot and cyst nematodes in particular, as well as gall-inducing and leaf-mining insects, manipulate plant development to form unique organs that provide them with food from feeding cells. Sometimes, infected tissues may undergo a developmental switch resulting in the formation of aberrant and spectacular structures (clubs or galls). We describe here the complex interactions between these plant-reprogramming sedentary endoparasites and their infected hosts, focusing on similarities between strategies of plant manipulation. We highlight progress in our understanding of the host plant response to infection and focus on the nematode and insect molecules secreted in planta. We suggest thatlooking at similarities may identify convergent and conserved strategies and shed light on the promise they hold for the development of new management strategies in agriculture and forestry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-010820-012722
2020-08-25
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/phyto/58/1/annurev-phyto-010820-012722.html?itemId=/content/journals/10.1146/annurev-phyto-010820-012722&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abad P, Rosso MN, Castagnone-Sereno P, de Almeida-Engler J, Favery B 2009. Invasion, feeding and development. Root-Knot Nematodes RN Perry, M Moens, JL Starr 163–81 King's Lynn, UK: CABI
    [Google Scholar]
  2. 2.
    Aditya J, Lewis J, Shirley NJ, Tan HT, Henderson M et al. 2015. The dynamics of cereal cyst nematode infection differ between susceptible and resistant barley cultivars and lead to changes in (1,3;1,4)-β-glucan levels and HvCslF gene transcript abundance. New Phytol 207:135–47
    [Google Scholar]
  3. 3.
    Al-Jbory Z, Anderson KM, Harris MO, Mittapalli O, Whitworth RJ, Chen M-S 2018. Transcriptomic analyses of secreted proteins from the salivary glands of wheat midge larvae. J. Insect Sci. 18:17
    [Google Scholar]
  4. 4.
    Al-Jbory Z, El-Bouhssini M, Chen MS 2018. Conserved and unique putative effectors expressed in the salivary glands of three related gall midge species. J. Insect Sci. 18:15
    [Google Scholar]
  5. 5.
    Amjad Ali M, Wieczorek K, Kreil DP, Bohlmann H 2014. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLOS ONE 9:e102360
    [Google Scholar]
  6. 6.
    Arora AK, Douglas AE. 2017. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J. Insect Physiol. 103:10–17
    [Google Scholar]
  7. 7.
    Barnes SN, Wram CL, Mitchum MG, Baum TJ 2018. The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein. Mol. Plant Pathol. 19:2263–76
    [Google Scholar]
  8. 8.
    Bartlem DG, Jones MGK, Hammes UZ 2014. Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J. Exp. Bot. 65:1789–98
    [Google Scholar]
  9. 9.
    Bartlett L, Connor EF. 2014. Exogenous phytohormones and the induction of plant galls by insects. Arthropod-Plant Interact 8:339–48
    [Google Scholar]
  10. 10.
    Bellafiore S, Shen Z, Rosso M-N, Abad P, Shih P, Briggs SP 2008. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLOS Pathog 4:e1000192
    [Google Scholar]
  11. 11.
    Bert W, Karssen G, Helder J 2011. Phylogeny and evolution of nematodes. See Ref. 74 45–59
  12. 12.
    Bird DMK, Jones JT, Opperman CH, Kikuchi T, Danchin TGJ, Danchin EGJ 2014. Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142:Suppl. 1S71–84
    [Google Scholar]
  13. 13.
    Blanc-Mathieu R, Perfus-Barbeoch L, Aury JM, Da Rocha M, Gouzy J et al. 2017. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLOS Genet 13:e1006777
    [Google Scholar]
  14. 14.
    Body M, Kaiser W, Dubreuil G, Casas J, Giron D 2013. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J. Chem. Ecol. 39:969–77
    [Google Scholar]
  15. 15.
    Bohlmann H, Sobczak M. 2014. The plant cell wall in the feeding sites of cyst nematodes. Front. Plant Sci. 5:89
    [Google Scholar]
  16. 16.
    Boto L. 2014. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. R. Soc. B 281:20132450
    [Google Scholar]
  17. 17.
    Bournaud C, Gillet F-X, Murad AM, Bresso E, Albuquerque EVS, Grossi-de-Sá MF 2018. Meloidogyne incognita PASSE-MURAILLE (MiPM) gene encodes a cell-penetrating protein that interacts with the CSN5 subunit of the COP9 signalosome. Front. Plant Sci. 9:904
    [Google Scholar]
  18. 18.
    Bozbuga R, Lilley CJ, Knox JP, Urwin PE 2018. Host-specific signatures of the cell wall changes induced by the plant parasitic nematode. Meloidogyne incognita. Sci. Rep. 8:17302
    [Google Scholar]
  19. 19.
    Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR 2018. Comparative genomics of Wolbachia-Cardinium dual endosymbiosis in a plant-parasitic nematode. Front. Microbiol. 9:2482
    [Google Scholar]
  20. 20.
    Cabrera J, Bustos R, Favery B, Fenoll C, Escobar C 2014. NEMATIC: a simple and versatile tool for the in silico analysis of plant-nematode interactions. Mol. Plant Pathol. 15:627–36
    [Google Scholar]
  21. 21.
    Cambier S, Ginis O, Moreau SJM, Gayral P, Hearn J et al. 2019. Gall wasp transcriptomes unravel potential effectors involved in molecular dialogues with oak and rose. Front. Physiol. 10:926
    [Google Scholar]
  22. 22.
    Čepulyte R, Danquah WB, Bruening G, Williamson VM 2018. Potent attractant for root-knot nematodes in exudates from seedling root tips of two host species. Sci. Rep. 8:10847
    [Google Scholar]
  23. 23.
    Chen J, Hu L, Sun L, Lin B, Huang K et al. 2018. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. Mol. Plant Pathol. 19:1942–55
    [Google Scholar]
  24. 24.
    Chen MS, Liu X, Yang Z, Zhao H, Shukle RH et al. 2010. Unusual conservation among genes encoding small secreted salivary gland proteins from a gall midge. BMC Evol. Biol. 10:296
    [Google Scholar]
  25. 25.
    Chen MS, Zhao HX, Zhu YC, Scheffler B, Liu X et al. 2008. Analysis of transcripts and proteins expressed in the salivary glands of Hessian fly (Mayetiola destructor) larvae. J. Insect Physiol. 54:1–16
    [Google Scholar]
  26. 26.
    Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF et al. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. PNAS 110:15728–33
    [Google Scholar]
  27. 27.
    Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ et al. 2014. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 15:R43
    [Google Scholar]
  28. 28.
    Danchin EGJ, Arguel M-J, Campan-Fournier A, Perfus-Barbeoch L, Magliano M et al. 2013. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLOS Pathog 9:e1003745
    [Google Scholar]
  29. 29.
    Danchin EGJ, Rosso M-N, Vieira P, de Almeida-Engler J, Coutinho PM et al. 2010. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. PNAS 107:17651–56
    [Google Scholar]
  30. 30.
    Davis EL, Haegeman A, Kikuchi T, Davies EL, Haegeman A, Kikuchi T 2011. Degradation of the plant cell wall by nematodes. See Ref. 74 255–72
  31. 31.
    Day RB, McAlvin CB, Loh JT, Denny RL, Wood TC et al. 2000. Differential expression of two soybean apyrases, one of which is an early nodulin. Mol. Plant-Microbe Interact. 13:1053–70
    [Google Scholar]
  32. 32.
    de Almeida Engler J, Favery B, Engler G, Abad P 2005. Loss of susceptibility as an alternative for nematode resistance. Curr. Opin. Biotechnol 16:112–17
    [Google Scholar]
  33. 33.
    de Almeida Engler J, Gheysen G 2013. Nematode-induced endoreduplication in plant host cells: why and how. Mol. Plant-Microbe Interact. 26:17–24
    [Google Scholar]
  34. 34.
    De Boer JM, Yan Y, Smant G, Davis EL, Baum TJ 1998. In-situ hybridization to messenger RNA in Heterodera glycines. J. Nematol 30:309–12
    [Google Scholar]
  35. 35.
    de Lima Detoni M, Faria-Pinto P, Quellis LR, Rust NM, Tavares LS et al. 2012. Galls from Calliandra brevipes BENTH (Fabaceae:Mimosoidae): evidence of apyrase activity contribution in a plant–insect interaction. Aust. J. Bot. 60:559–67
    [Google Scholar]
  36. 36.
    De Meutter J, Tytgat T, Witters E, Gheysen G, Van Onckelen H, Gheysen G 2003. Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Mol. Plant Pathol 4:271–77
    [Google Scholar]
  37. 37.
    De Meutter J, Tytgat T, Prinsen E, Gheysen G, Van Onckelen H, Gheysen G 2005. Production of auxin and related compounds by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Commun.. Agric. Appl. Biol. Sci 70:51–60
    [Google Scholar]
  38. 38.
    Diaz-Granados A, Petrescu AJ, Goverse A, Smant G 2016. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity. Front. Plant Sci. 7:1575
    [Google Scholar]
  39. 39.
    Dowd CD, Chronis D, Radakovic ZS, Siddique S, Schmülling T et al. 2017. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes. Plant J 92:211–28
    [Google Scholar]
  40. 40.
    Dubreuil G, Deleury E, Magliano M, Jaouannet M, Abad P, Rosso M-N 2011. Peroxiredoxins from the plant parasitic root-knot nematode, Meloidogyne incognita, are required for successful development within the host. Int. J. Parasitol. 41:385–96
    [Google Scholar]
  41. 41.
    Elling AA, Davis EL, Hussey RS, Baum TJ 2007. Active uptake of cyst nematode parasitism proteins into the plant cell nucleus. Int. J. Parasitol. 37:1269–79
    [Google Scholar]
  42. 42.
    Erb M, Reymond P. 2019. Molecular interactions between plants and insect herbivores. Annu. Rev. Plant Biol. 70:527–57
    [Google Scholar]
  43. 43.
    Escobar C, Brown S, Mitchum M 2011. Transcriptomic and proteomic analysis of the plant response to nematode infection. See Ref. 74 157–73
  44. 44.
    Escudero Martinez CM, Guarneri N, Overmars H, van Schaik C, Bouwmeester H et al. 2019. Distinct roles for strigolactones in cyst nematode parasitism of Arabidopsis roots. Eur. J. Plant Pathol 154:129–40
    [Google Scholar]
  45. 45.
    Eves-van den Akker S, Birch PRJ 2016. Opening the effector protein toolbox for plant–parasitic cyst nematode interactions. Mol. Plant 9:1451–53
    [Google Scholar]
  46. 46.
    Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EGJ et al. 2016. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 17:124
    [Google Scholar]
  47. 47.
    Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE 2014. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLOS Pathog 10:e1004391
    [Google Scholar]
  48. 48.
    Favery B, Quentin M, Jaubert-Possamai S, Abad P 2016. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. J. Insect Physiol. 84:60–69
    [Google Scholar]
  49. 49.
    Gardner M, Verma A, Mitchum MG 2015. Emerging roles of cyst nematode effectors in exploiting plant cellular processes. Adv. Bot. Res. 73:259–91
    [Google Scholar]
  50. 50.
    Gheysen G, Mitchum MG. 2011. How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 14:415–21
    [Google Scholar]
  51. 51.
    Gheysen G, Mitchum MG. 2019. Phytoparasitic nematode control of plant hormone pathways. Plant Physiol 179:1212–26
    [Google Scholar]
  52. 52.
    Giron D, Dedeine F, Dubreuil G, Huguet E, Mouton L et al. 2017. Influence of microbial symbionts on plant–insect interactions. Adv. Bot. Res. 81:225–57
    [Google Scholar]
  53. 53.
    Giron D, Dubreuil G, Bennett A, Dedeine F, Dicke M et al. 2018. Promises and challenges in insect–plant interactions. Entomol. Exp. Appl. 166:319–43
    [Google Scholar]
  54. 54.
    Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M 2013. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct. Ecol. 27:599–609
    [Google Scholar]
  55. 55.
    Giron D, Huguet E, Stone GN, Body M 2016. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 84:70–89
    [Google Scholar]
  56. 56.
    Goverse A, Smant G. 2014. The activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52:243–65
    [Google Scholar]
  57. 57.
    Groen SC, Humphrey PT, Chevasco D, Ausubel FM, Pierce NE, Whiteman NK 2016. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. . J. Insect Physiol 84:90–102
    [Google Scholar]
  58. 58.
    Grundler FMW, Hofmann J. 2011. Water and nutrient transport in nematode feeding sites. See Ref. 74 423–39
  59. 59.
    Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC et al. 2016. Shared weapons of blood- and plant-feeding insects: surprising commonalities for manipulating hosts. J. Insect Physiol. 84:4–21
    [Google Scholar]
  60. 60.
    Guiguet A, Hamatani A, Amano T, Takeda S, Lopez-Vaamonde C et al. 2018. Inside the horn of plenty: Leaf-mining micromoth manipulates its host plant to obtain unending food provisioning. PLOS ONE 13:e0209485
    [Google Scholar]
  61. 61.
    Guiguet A, Ohshima I, Takeda S, Laurans F, Lopez-Vaamonde C, Giron D 2019. Origin of gall-inducing from leaf-mining in Caloptilia micromoths (Lepidoptera, Gracillariidae). Sci. Rep. 9:6794
    [Google Scholar]
  62. 62.
    Haegeman A, Vanholme B, Jacob J, Vandekerckhove TT, Claeys M et al. 2009. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int. J. Parasitol. 39:1045–54
    [Google Scholar]
  63. 63.
    Hamamouch N, Li C, Hewezi T, Baum TJ, Mitchum MG et al. 2012. The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism. J. Exp. Bot. 63:3683–95
    [Google Scholar]
  64. 64.
    Harris MO, Freeman TP, Rohfritsch O, Anderson KG, Payne SA, Moore JA 2006. Virulent Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactions with wheat. Ann. Entomol. Soc. Am. 99:305–16
    [Google Scholar]
  65. 65.
    Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey J-L, Pujade-Villar J et al. 2019. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLOS Genet 15:e1008398
    [Google Scholar]
  66. 66.
    Hewezi T, Baum TJ. 2013. Manipulation of plant cells by cyst and root-knot nematode effectors. Mol. Plant-Microbe Interact. 26:9–16
    [Google Scholar]
  67. 67.
    Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG et al. 2010. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. . Plant Physiol 152:968–84
    [Google Scholar]
  68. 68.
    Hewezi T, Juvale PS, Piya S, Maier TR, Rambani A et al. 2015. The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis. . Plant Cell 27:891–907
    [Google Scholar]
  69. 69.
    Holbein J, Grundler FMW, Siddique S 2016. Plant basal resistance to nematodes: an update. J. Exp. Bot. 67:2049–61
    [Google Scholar]
  70. 70.
    Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS 2006. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol. Plant-Microbe Interact. 19:463–70
    [Google Scholar]
  71. 71.
    Jaubert-Possamai S, Noureddine Y, Favery B 2019. MicroRNAs, new players in the plant–nematode interaction. Front. Plant Sci. 10:1180
    [Google Scholar]
  72. 72.
    Ji H, Gheysen G, Denil S, Lindsey K, Topping JF et al. 2013. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. J. Exp. Bot. 64:3885–98
    [Google Scholar]
  73. 73.
    Ji R, Ye W, Chen H, Zeng J, Li H et al. 2017. A salivary endo-β-1,4-glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol 173:31920–32
    [Google Scholar]
  74. 74.
    Jones J, Gheysen G, Fenoll C 2011. Genomics and Molecular Genetics of Plant-Nematode Interactions Dordrecht, Neth: Springer
  75. 75.
    Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946–61
    [Google Scholar]
  76. 76.
    Jones MGK, Goto DB. 2011. Root-knot nematodes and giant cells. See Ref. 74 83–100
  77. 77.
    Kaiser W, Huguet E, Casas J, Commin C, Giron D 2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. R. Soc. B 277:2311–19
    [Google Scholar]
  78. 78.
    Kalsi G, Etzler ME. 2000. Localization of a nod factor-binding protein in legume roots and factors influencing its distribution and expression. Plant Physiol 124:1039–48
    [Google Scholar]
  79. 79.
    Kawazu K, Mochizuki A, Sato Y, Sugeno W, Murata M et al. 2012. Different expression profiles of jasmonic acid and salicylic acid inducible genes in the tomato plant against herbivores with various feeding modes. Arthropod-Plant Interact 6:221–30
    [Google Scholar]
  80. 80.
    Khajuria C, Wang H, Liu X, Wheeler S, Reese JC et al. 2013. Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genom 14:423
    [Google Scholar]
  81. 81.
    Kim J, Yang R, Chang C, Park Y, Tucker ML 2018. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis inflorescence deficient in abscission signaling peptide. J. Exp. Bot. 69:3009–21
    [Google Scholar]
  82. 82.
    Kutsukake M, Uematsu K, Fukatsu T 2019. Plant manipulation by gall-forming social aphids for waste management. Front. Plant Sci. 10:933
    [Google Scholar]
  83. 83.
    Kyndt T, Denil S, Haegeman A, Trooskens G, Bauters L et al. 2012. Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196:887–900
    [Google Scholar]
  84. 84.
    Kyndt T, Goverse A, Haegeman A, Warmerdam S, Wanjau C et al. 2016. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes. J. Exp. Bot. 67:4559–70
    [Google Scholar]
  85. 85.
    Lahari Z, Ullah C, Kyndt T, Gershenzon J, Gheysen G 2019. Strigolactones enhance root‐knot nematode (Meloidogyne graminicola) infection in rice by antagonizing the jasmonate pathway. New Phytol 224:454–65
    [Google Scholar]
  86. 86.
    Lee C, Chronis D, Kenning C, Peret B, Hewezi T et al. 2011. The novel cyst nematode effector protein 19c07 interacts with the Arabidopsis auxin influx transporter lax3 to control feeding site development. Plant Physiol 155:866–80
    [Google Scholar]
  87. 87.
    Leelarasamee N, Zhang L, Gleason C 2018. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism. PLOS Pathog 14:e1006947
    [Google Scholar]
  88. 88.
    Lim PO, Kim HJ, Gil Nam H 2007. Leaf senescence. Annu. Rev. Plant Biol. 58:115–36
    [Google Scholar]
  89. 89.
    Lin B, Zhuo K, Chen S, Hu L, Sun L et al. 2016. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytol 209:1159–73
    [Google Scholar]
  90. 90.
    Liu X, Bai J, Huang L, Zhu L, Liu X et al. 2007. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33:2171–94
    [Google Scholar]
  91. 91.
    Liu X, Williams CE, Nemacheck JA, Wang H, Subramanyam S et al. 2010. Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152:985–99
    [Google Scholar]
  92. 92.
    Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers-Tomczak A et al. 2012. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. PNAS 109:10119–24
    [Google Scholar]
  93. 93.
    Manosalva P, Manohar M, von Reuss SH, Chen S, Koch A et al. 2015. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6:7795
    [Google Scholar]
  94. 94.
    Masonbrink R, Maier TR, Muppirala U, Seetharam AS, Lord E et al. 2019. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC Genom 20:119
    [Google Scholar]
  95. 95.
    Mei Y, Wright KM, Haegeman A, Bauters L, Diaz-Granados A et al. 2018. The Globodera pallida SPRYSEC effector GpSPRY-414-2 that suppresses plant defenses targets a regulatory component of the dynamic microtubule network. Front. Plant Sci. 9:1019
    [Google Scholar]
  96. 96.
    Mejias J, Truong NM, Abad P, Favery B, Quentin M 2019. Plant proteins and processes targeted by parasitic nematode effectors. Front. Plant Sci. 10:970
    [Google Scholar]
  97. 97.
    Mendy B, Wang'ombe MW, Radakovic ZS, Holbein J, Ilyas M et al. 2017. Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLOS Pathog 13:e1006284
    [Google Scholar]
  98. 98.
    Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA et al. 2013. Nematode effector proteins: an emerging paradigm of parasitism. New Phytol 199:879–94
    [Google Scholar]
  99. 99.
    Mitchum MG, Wang X, Wang J, Davis EL 2012. Role of nematode peptides and other small molecules in plant parasitism. Annu. Rev. Phytopathol. 50:175–95
    [Google Scholar]
  100. 100.
    Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–16
    [Google Scholar]
  101. 101.
    Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T et al. 2009. Prevalence of cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus cardinium hertigii” based on detection of a new cardinium group from biting midges. Appl. Environ. Microbiol. 75:6757–63
    [Google Scholar]
  102. 102.
    Nguyen C-N, Perfus-Barbeoch L, Quentin M, Zhao J, Magliano M et al. 2018. A root-knot nematode small glycine and cysteine-rich secreted effector, MiSGCR1, is involved in plant parasitism. New Phytol 217:687–99
    [Google Scholar]
  103. 103.
    Noel GR. 2006. Candidatus Paenicardinium endonii”, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol 56:1697–1702
    [Google Scholar]
  104. 104.
    Pogorelko GV, Juvale PS, Rutter WB, Hütten M, Maier TR et al. 2019. Retargeting of a plant defense protease by a cyst nematode effector. Plant J 98:1000–14
    [Google Scholar]
  105. 105.
    Poulin R, Randhawa HS. 2015. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology 142:S6–15
    [Google Scholar]
  106. 106.
    Quentin M, Abad P, Favery B 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front. Plant Sci. 4:53
    [Google Scholar]
  107. 107.
    Replogle A, Wang J, Bleckmann A, Hussey RS, Baum TJ et al. 2011. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant J 65:430–40
    [Google Scholar]
  108. 108.
    Rodiuc N, Barlet X, Hok S, Perfus-Barbeoch L, Allasia V et al. 2016. Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease. Plant Cell Environ 39:1396–1407
    [Google Scholar]
  109. 109.
    Rohfritsch O. 2008. Plants, gall midges, and fungi: a three-component system. Entomol. Exp. Appl. 128:208–16
    [Google Scholar]
  110. 110.
    Rutter WB, Hewezi T, Maier TR, Mitchum MG, Davis EL et al. 2014. Members of the Meloidogyne avirulence protein family contain multiple plant ligand-like motifs. Phytopathology 104:879–85
    [Google Scholar]
  111. 111.
    Sato K, Kadota Y, Shirasu K 2019. Plant immune responses to parasitic nematodes. Front. Plant Sci. 10:1165
    [Google Scholar]
  112. 112.
    Schultz JC, Edger PP, Body MJA, Appel HM 2019. A galling insect activates plant reproductive programs during gall development. Sci. Rep. 9:1833
    [Google Scholar]
  113. 113.
    Shah SJ, Anjam MS, Mendy B, Anwer MA, Habash SS et al. 2017. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. J. Exp. Bot. 68:5949–60
    [Google Scholar]
  114. 114.
    Shih T-H, Lin S-H, Huang M-Y, Sun C-W, Yang C-M 2018. Transcriptome profile of cup-shaped galls in Litsea acuminata leaves. PLOS ONE 13:e0205265
    [Google Scholar]
  115. 115.
    Siddique S, Radakovic ZS, De La Torre CM, Chronis D, Novák O et al. 2015. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. PNAS 112:12669–74
    [Google Scholar]
  116. 116.
    Simonetti E, Veronico P, Melillo MT, Delibes A, Andrés MF, López-Braña I 2009. Analysis of class III peroxidase genes expressed in roots of resistant and susceptible wheat lines infected by Heterodera avenae. . Molecular Plant-Microbe Interact 22:1081–92
    [Google Scholar]
  117. 117.
    Smant G, Stokkermans JP, Yan Y, de Boer JM, Baum TJ et al. 1998. Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. PNAS 95:4906–11
    [Google Scholar]
  118. 118.
    Sobczak M, Golinowski W. 2009. Structure of cyst nematode feeding sites. Plant Cell Monographs RH Berg, CG Taylor Berlin: Springer
    [Google Scholar]
  119. 119.
    Stahl E, Hilfiker O, Reymond P 2018. Plant-arthropod interactions: Who is the winner. Plant J 93:703–28
    [Google Scholar]
  120. 120.
    Stone GN, Schönrogge K. 2003. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18:512–22
    [Google Scholar]
  121. 121.
    Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J 2002. The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu. Rev. Entomol. 47:633–68
    [Google Scholar]
  122. 122.
    Stuart JJ, Chen M-S, Shukle R, Harris MO 2012. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopathol. 50:339–57
    [Google Scholar]
  123. 123.
    Takeda S, Yoza M, Amano T, Ohshima I, Hirano T et al. 2019. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLOS ONE 14:e0223686
    [Google Scholar]
  124. 124.
    Takei M, Yoshida S, Kawai T, Hasegawa M, Suzuki Y 2015. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees. J. Insect Physiol. 72:43–51
    [Google Scholar]
  125. 125.
    Tanaka K, Choi J, Cao Y, Stacey G 2014. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5:446
    [Google Scholar]
  126. 126.
    Teixeira MA, Wei L, Kaloshian I 2016. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. New Phytol 211:276–87
    [Google Scholar]
  127. 127.
    Tokuda M, Jikumaru Y, Matsukura K, Takebayashi Y, Kumashiro S et al. 2013. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLOS ONE 8:e62350
    [Google Scholar]
  128. 128.
    Tooker JF, De Moraes CM 2011. Feeding by a gall-inducing caterpillar species alters levels of indole-3-acetic and abscisic acid in Solidagoaltissima (Asteraceae) stems. Arthropod-Plant Interact 5:115–24
    [Google Scholar]
  129. 129.
    Tooker JF, Helms AM. 2014. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 40:742–53
    [Google Scholar]
  130. 130.
    Truong NM, Nguyen C-N, Abad P, Quentin M, Favery B 2015. Function of root-knot nematode effectors and their targets in plant parasitism. Adv. Bot. Res. 73:293–324
    [Google Scholar]
  131. 131.
    Vanholme B, Kast P, Haegeman A, Jacob J, Grunewald W, Gheysen G 2009. Structural and functional investigation of a secreted chorismate mutase from the plant-parasitic nematode Heterodera schachtii in the context of related enzymes from diverse origins. Mol. Plant Pathol. 10:2189–200
    [Google Scholar]
  132. 132.
    van Schie CCN, Takken FLW 2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–81
    [Google Scholar]
  133. 133.
    Verma A, Lee C, Morriss S, Odu F, Kenning C et al. 2018. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. New Phytol 219:697–713
    [Google Scholar]
  134. 134.
    Vieira P, Danchin EGJ, Neveu C, Crozat C, Jaubert S et al. 2011. The plant apoplasm is an important recipient compartment for nematode secreted proteins. J. Exp. Bot. 62:1241–53
    [Google Scholar]
  135. 135.
    Vijayapalani P, Hewezi T, Pontvianne F, Baum TJ 2018. An effector from the cyst nematode Heterodera schachtii derepresses host rRNA genes by altering histone acetylation. Plant Cell 30:2795–2812
    [Google Scholar]
  136. 136.
    Viney M. 2017. How can we understand the genomic basis of nematode parasitism. Trends Parasitol 33:444–52
    [Google Scholar]
  137. 137.
    Wang X-R, Moreno YA, Wu H-R, Ma C, Li Y et al. 2012. Proteomic profiles of soluble proteins from the esophageal gland in female Meloidogyne incognita. Int. J. . Parasitol 42:1177–83
    [Google Scholar]
  138. 138.
    Wang Z, Ge JQ, Chen H, Cheng X, Yang Y et al. 2018. An insect nucleoside diphosphate kinase (NDK) functions as an effector protein in wheat–Hessian fly interactions. Insect Biochem. Mol. Biol. 100:30–38
    [Google Scholar]
  139. 139.
    Wasala SK, Brown AM V., Kang J, Howe DK, Peetz AB et al. 2019. Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant-parasitic nematode field populations. Front. Microbiol. 10:964
    [Google Scholar]
  140. 140.
    Weinstein SB, Kuris AM. 2016. Independent origins of parasitism in Animalia. Biol. Lett. 12:20160324
    [Google Scholar]
  141. 141.
    Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J et al. 2010. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–48
    [Google Scholar]
  142. 142.
    Wool D. 2005. Gall-inducing aphids: biology, ecology, and evolution. Biology, Ecology and Evolution of Gall-Inducing Arthropods A Raman, CW Schaefer, TM Withers 73–132 Boca Raton, FL: CRC Press
    [Google Scholar]
  143. 143.
    Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y 2012. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol 196:586–95
    [Google Scholar]
  144. 144.
    Zchori-Fein E, Perlman SJ. 2004. Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol 13:2009–16
    [Google Scholar]
  145. 145.
    Zhang H, Dubreuil G, Faivre N, Dobrev P, Kaiser W et al. 2018. Modulation of plant cytokinin levels in the Wolbachia-free leaf-mining species Phyllonorycter mespilella. Entomol. Exp. . Appl 166:428–38
    [Google Scholar]
  146. 146.
    Zhang H, Dugé de Bernonville T, Body M, Glevarec G, Reichelt M et al. 2016. Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. J. Insect Physiol. 84:114–27
    [Google Scholar]
  147. 147.
    Zhang H, Guiguet A, Dubreuil G, Kisiala A, Andreas P et al. 2017. Dynamics and origin of cytokinins involved in plant manipulation by a leaf-mining insect. Insect Sci 24:1065–78
    [Google Scholar]
  148. 148.
    Zhao C, Escalante LN, Chen H, Benatti TR, Qu J et al. 2015. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. . Biol 25:613–20
    [Google Scholar]
  149. 149.
    Zhao J, Li L, Liu Q, Liu P, Li S et al. 2019. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J. Exp. Bot. 70:5943–58
    [Google Scholar]
  150. 150.
    Zhu L, Chen M-S, Liu X 2011. Changes in phytohormones and fatty acids in wheat and rice seedlings in response to Hessian fly (Diptera: Cecidomyiidae) infestation. J. Econ. Entomol. 104:1384–92
    [Google Scholar]
  151. 151.
    Zhu L, Liu X, Liu X, Jeannotte R, Reese JC et al. 2008. Hessian fly (Mayetiola destructor) attack causes a dramatic shift in carbon and nitrogen metabolism in wheat. Mol. Plant-Microbe Interact. 21:70–78
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-010820-012722
Loading
/content/journals/10.1146/annurev-phyto-010820-012722
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error