Synlett 2021; 32(03): 241-248
DOI: 10.1055/s-0040-1707244
account
© Georg Thieme Verlag Stuttgart · New York

Collaboration in Natural Product Total Synthesis: Carolacton – A Decade of Discovery

Amy E. Solinski
a   Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
,
a   Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
b   Emory Antibiotic Resistance Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA   Email: wwuest@emory.edu
› Author Affiliations
This research was supported by the National Science Foundation (CHE1755698) and the National Institute of Dental and Craniofacial Research (DE025837). The NMR instruments used in this work were supported by the National Science Foundation (CHE1531620).
Further Information

Publication History

Received: 16 June 2020

Accepted after revision: 08 July 2020

Publication Date:
27 August 2020 (online)


Dedicated to Andy Phillips for his mentorship and support.

Abstract

Carolacton, a macrocyclic natural product with impressive anti-biofilm biological activity, has been a focus in multiple research groups for the past decade. Chemists and biologists, alike, have been interested in uncovering the mechanism of action and have made great strides towards this goal. Carolacton causes cellular defects in Streptococcus mutans biofilm, which leads to decreases in cellular viability. As biological targets have been uncovered, synthetic chemists have devised synthetic routes that have helped uncover the important chemical functionalities that lead to biological activity. Herein, we discuss our synthetic collaboration that galvanized an entire research program around the natural product carolacton.

 
  • References

  • 1 Jansen R, Irschik H, Huch V, Schummer D, Steinmetz H, Bock M, Schmidt T, Kirschning A, Müller R. Eur. J. Org. Chem. 2010; 1284
  • 2 Listl S, Galloway J, Mossey PA, Marcenes W. J. Dent. Res. 2015; 94: 1355
  • 3 Loesche WJ. Microbiol. Rev. 1986; 50: 353
  • 4 Scharnow AM, Solinski AE, Wuest WM. MedChemComm 2019; 10: 1057
  • 5 Lemos JA, Quivey RG, Koo H, Abranches J. Microbiology (Reading, England) 2013; 159: 436
  • 6 Kunze B, Reck M, Dotsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, Wagner-Dobler I. BMC Microbiol. 2010; 10: 199
  • 7 Reck M, Rutz K, Kunze B, Tomasch J, Surapaneni SK, Schulz S, Wagner-Dobler I. J. Bacteriol. 2011; 193: 5692
  • 8 Li J, Wang W, Wang Y, Zeng A.-P. PROTEOMICS 2013; 13: 3470
  • 9 Sudhakar P, Reck M, Wang W, He FQ, Wagner-Döbler I, Zeng A.-P. BMC Genomics 2014; 15: 362
  • 10 Fu C, Sikandar A, Donner J, Zaburannyi N, Herrmann J, Reck M, Wagner-Döbler I, Koehnke J, Müller R. Nat. Commun. 2017; 8: 1529
  • 11 Hallside MS, Brzozowski RS, Wuest WM, Phillips AJ. Org. Lett. 2014; 16: 1148
  • 12 Schmidt T, Kirschning A. Angew. Chem. Int. Ed. 2012; 51: 1063
  • 13 Kuilya TK, Goswami RK. Org. Lett. 2017; 19: 2366
  • 14 Sabitha G, Shankaraiah K, Prasad MN, Yadav JS. Synthesis 2012; 45: 251
  • 15 Ghosh S, Rao K. Synthesis 2013; 45: 2745
  • 16 Sharma GV. M, Reddy SV. RSC Adv. 2013; 3: 21759
  • 17 Reddy SV, Prasanna Kumar K, Ramakrishna KV. S, Sharma GV. M. Tetrahedron Lett. 2015; 56: 2018
  • 18 Solinski AE, Koval AB, Brzozowski RS, Morrison KR, Fraboni AJ, Carson CE, Eshraghi AR, Zhou G, Quivey RG. Jr, Voelz VA, Buttaro BA, Wuest WM. J. Am. Chem. Soc. 2017; 139: 7188
  • 19 Stumpp N, Premnath P, Schmidt T, Ammermann J, Dräger G, Reck M, Jansen R, Stiesch M, Wagner-Döbler I, Kirschning A. Org. Biomol. Chem. 2015; 13: 5765
  • 20 Ammermann J, Schmidt T, Donner J, Reck M, Dalton M, Stumpp N, Stiesch M, Wagner-Dobler I, Kirschning A. Org. Biomol. Chem. 2017; 15: 8553
  • 21 Kumar VP, Chandrasekhar S. Org. Lett. 2013; 15: 3610
  • 22 Solinski AE, Scharnow AM, Fraboni AJ, Wuest WM. ACS Infect. Dis. 2019; 5: 1480
  • 23 Sudhakar P, Reck M, Wang W, He FQ, Wagner-Dobler I, Zeng AP. BMC Genomics 2014; 15: 362