Skip to main content
Log in

Clarifying effect of welding conditions on microstructure and mechanical properties of friction stir spot-welded DH590 automotive high-strength steel plates

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Friction stir spot welding was successfully applied to the 1.2-mm-thick DH590 dual-phase steel plates by using a polycrystalline cubic boron nitride rotating tool. During welding, the rotation speed ranged from 600 to 1000 r/min and the penetration depth ranged from 0.1 to 0.3 mm. In the spot joints, the size of the stir zone increased with the increase in rotation speed as well as the penetration depth of the tool. Comparing with the banded ferrite and martensite structure of the base metal, a mixed microstructure of ferrite and tempered martensite, refined bainite structure and coarse martensite structure were found in the heat-affected zone, thermomechanically affected zone and stir zone of the joints, respectively. Two kinds of interfacial shapes were formed between the upper and lower steel plates, and the formation of the bonded interface was dominated mainly by the penetration depth of the rotating tool rather than the rotation speed. It was revealed that the joints with straight interfaces showed higher shear tensile loads comparing with those with hook-like interfaces. Shear tensile tests showed that the maximum shear tensile load reached about 15.56 kN when the rotation speed and penetration depth were set as 800 r/min and 0.3 mm, respectively. The specimen was fractured through plug failure mode with a total elongation of about 5.6 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.P. Miles, C.S. Ridges, Y. Hovanski, J. Peterson, M.L. Santella, R. Steel, Sci. Technol. Weld. Joining 16 (2011) 642–647.

    Google Scholar 

  2. X. Sun, F. Meng, J. Liu, J. McKechnie, J. Yang, J. Clean. Product. 220 (2019) 1–8.

    Google Scholar 

  3. H.W. Zhao, R.B. Zhang, Z.Y. Bin, in: 2018 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018), Atlantis Press, Qingdao, China, 2018, pp. 59–62.

  4. G.K. Ahiale, Y.J. Oh, W.D. Choi, K.B. Lee, J.G. Jung, S.W. Nam, Met. Mater. Int. 19 (2013) 933–939.

    Google Scholar 

  5. C.J. Xie, S.L. Yang, H.B. Liu, Q. Zhang, Y.M. Cao, Y. Wang, J. Mater. Eng. Perform. 26 (2017) 3794–3801.

    Google Scholar 

  6. T.K. Pal, K. Bhowmick, J. Mater. Eng. Perform. 21 (2012) 280–285.

    Google Scholar 

  7. T. Hartman, M.P. Miles, S.T. Hong, R. Steel, S. Kelly, Wear 328–329 (2015) 531–536.

    Google Scholar 

  8. M.I. Khan, M.L. Kuntz, P. Su, A. Gerlich, T. North, Y. Zhou, Sci. Technol. Weld. Joining 12 (2007) 175–182.

    Google Scholar 

  9. Z. Shen, W.Y. Li, Y. Ding, W. Hou, X.C. Liu, W. Guo, H.Y. Chen, X. Liu, J. Yang, A.P. Gerlich, J. Manuf. Proc. 49 (2020) 260–270.

    Google Scholar 

  10. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, Friction stir butt welding, PCT/GB92/02203, Japan, 1991.

  11. G.P. Dinda, A. Ramakrishnan, Int. J. Adv. Manuf. Technol. 103 (2019) 4763–4769.

    Google Scholar 

  12. E. Biro, J.R. McDermid, J.D. Embury, Y. Zhou, Metall. Mater. Trans. A 41 (2010) 2348–2356.

    Google Scholar 

  13. Y.F. Sun, H. Fujii, N. Takaki, Y. Okitsu, Mater. Des. 37 (2012) 384–392.

    Google Scholar 

  14. F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater. Sci. Technol. 34 (2018) 39–57.

    Google Scholar 

  15. Y.F. Sun, J.M. Shen, Y. Morisada, H. Fujii, Mater. Des. 54 (2014) 450–457.

    Google Scholar 

  16. L.Cui, C. Zhang, Y.C. Liu, X.G. Liu, D.P. Wang, H.J. Li, J. Iron Steel Res. Int. 25 (2018) 477–486.

    Google Scholar 

  17. T. Liyanage, J. Kilbourne, A.P. Gerlich, T.H. North, Sci. Technol. Weld. Joining 14 (2009) 500–508.

    Google Scholar 

  18. T. Weinberger, N. Enzinger, H. Cerjak, Sci. Technol. Weld. Joining 14 (2009) 210–215.

    Google Scholar 

  19. R. Sarkar, T.K. Pal, M. Shome, Sci. Technol. Weld. Joining 19 (2014) 436–442.

    Google Scholar 

  20. H. Das, K.J. Lee, S.T. Hong, J. Mater. Eng. Perform. 26 (2017) 3607–3613.

    Google Scholar 

  21. R. Ohashi, M. Fujimoto, S. Mironov, Y.S. Sato, H. Kokawa, Sci. Technol. Weld. Joining 14 (2009) 221–227.

    Google Scholar 

  22. R. Ohashi, Weld. World 55 (2011) 2–11.

    Google Scholar 

  23. R. Ohashi, M. Fujimoto, S. Mironov, Y.S. Sato, H. Kokawa, Weld. World 53 (2009) 23–27.

    Google Scholar 

  24. H. Lee, C. Kim, J.H. Song, Materials 8 (2015) 8424–8436.

    Google Scholar 

  25. E. Aldanondo, A. Taboada, E. Arruti, P. Alvarez, A. Echeverria, in: Proceedings of the 1st International Joint Symposium on Joining and Welding, Woodhead Publishing, Osaka, Japan, 2013, pp. 179–182.

  26. Z.W. Wang, G.N. Ma, B.H. Yu, P. Xue, G.M. Xie, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma, Sci. Technol. Weld. Joining 25 (2020) 336–344.

    Google Scholar 

  27. G.Q. Wang, Y.H. Zhao, Y.F. Hao, J. Mater. Sci. Technol. 34 (2018) 73–91.

    Google Scholar 

  28. A.K. Lakshminarayanan, V. Balasubramanian, M. Salahuddin, J. Iron Steel Res. Int. 17 (2010) No. 10, 68–74.

    Google Scholar 

  29. M. Mahmoudiniya, A.H. Kokabi, S. Kheirandish, L. Kestens, Mater. Sci. Eng. A 737 (2018) 213–222.

    Google Scholar 

  30. F. Fang, Y.Y. Yin, H. Wang, C.J. Lin, Adv. Mater. Res. 548 (2012) 301–304.

    Google Scholar 

  31. H. Das, M. Mondal, S.T. Hong, Y. Lim, K.J. Lee, Mater. Charact. 139 (2018) 428–436.

    Google Scholar 

  32. A. Barabi, A. Zarei-Hanzaki, H. Abedi, A. Anoushe, J.H. Cho, Steel Res. Int. 89 (2018) 1800245.

    Google Scholar 

  33. G. Pérez-Medina, H. Lopez, A. Miranda-Pérez, E. Hurtado-Delgado, J. Iron Steel Res. Int. 27 (2020) 188–196.

    Google Scholar 

  34. C.X. Liu, L. Shi, Y.C. Liu, C. Li, H.J. Li, Q.Y. Guo, J. Mater. Sci. 51 (2016) 3555–3563.

    Google Scholar 

  35. R.A. Ricks, P.R. Howell, G.S. Barritte, J. Mater. Sci. 17 (1982) 732–740.

    Google Scholar 

  36. R. Ghomashchi, W. Costin, R. Kurji, Mater. Charact. 107 (2015) 317–326.

    Google Scholar 

  37. A.K. Lakshminarayanan, V.E. Annamalai, K. Elangovan, J. Mater. Res. Technol. 4 (2015) 262–272.

    Google Scholar 

  38. M.M.Z. Ahmed, E. Ahmed, A.S. Hamada, S.A. Khodir, M.M.E.S. Seleman, B.P. Wynne, Mater. Des. 91 (2016) 378–387.

    Google Scholar 

  39. O. Abedini, E. Ranjbarnodeh, P. Marashi, Mater. Technol. 51 (2017) 687–694.

    Google Scholar 

  40. M.A.M. Hossain, M.T. Hasan, S.T. Hong, M. Miles, H.H. Cho, H.N. Han, Met. Mater. Int. 19 (2013) 1243–1250.

    Google Scholar 

  41. B. Wang, L. Hua, X.K. Wang, J.J. Li, Int. J. Adv. Manuf. Technol. 86 (2016) 2927–2935.

    Google Scholar 

  42. S. Miller, E. Pfeif, A. Kazakov, E. Baumann, M. Dowell, in: Proc. SPIE 9741, High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications V, International Society for Optics and Photonics, Washington, USA, 2016, pp. 97410I.

  43. N. Saunders, M. Miles, T. Hartman, Y. Hovanski, S.T. Hong, R. Steel, Int. J. Precis. Eng. Manuf. 15 (2014) 841–848.

    Google Scholar 

  44. M. Santella, Y. Hovanski, A. Frederick, G. Grant, M. Dahl, Sci. Technol. Weld. Joining 15 (2010) 271–278.

    Google Scholar 

  45. G.M. Xie, H.B. Cui, Z.A. Luo, W. Yu, J. Ma, G.D. Wang, J. Mater. Sci. Technol. 32 (2016) 326–332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-feng Sun or Shao-kang Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yp., Chen, Lf., Zhu, Sj. et al. Clarifying effect of welding conditions on microstructure and mechanical properties of friction stir spot-welded DH590 automotive high-strength steel plates. J. Iron Steel Res. Int. 28, 232–243 (2021). https://doi.org/10.1007/s42243-020-00478-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00478-x

Keywords

Navigation