Skip to main content
Log in

Optimal Design of a Composite Reinforced by Unidirectional Fibers

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

On the basis of a minimax criterion and stress intensity factor minimization, the optimal preload is determined for the case of elastic fibers fit into a doubly periodic system of holes in an isotropic elastic binder. A selection criterion is proposed for an interference fit that prevents the fracture of a composite reinforced with unidirectional fibers and ensures optimal stress distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Mirsalimov and F. A. Bakhyshov, “Inverse Problem of the Fracture Mechanics of a Composite Perforated Plate during Bending,” Probl. Mashinostr. Nadezh. Mashin 34 (5), 28–37 (2005).

    Google Scholar 

  2. D. Castagnetti and E. Dragoni, “Optimal Aspect Ratio of Interference Fits for Maximum Load Transfer Capacity,” J. Strain Anal. Eng. Design 40 (2), 177–184 (2005).

    Article  Google Scholar 

  3. F. A. Bakhyshov and V. M. Mirsalimov, “Inverse Doubly Periodic Problem of the Theory of Bending of a Plate with Elastic Inclusions,” Prikl. Mekh. Tekh. Fiz. 47 (4), 153–161 (2006) [J. Appl. Mech. Tech. Phys. 47 (4), 588–595 (2006)].

    MATH  Google Scholar 

  4. T. N. Chakherlou, M. Mirzajanzadeh, and J. Vogwell, “Experimental and Numerical Investigations into the Effect of an Interference Fit on the Fatigue Life of Double Shear Lap Joints,” Eng. Failure Anal. 16 (7), 2066–2080 (2009).

    Article  Google Scholar 

  5. V. M. Mirsalimov, “Inverse Problem of Fracture Mechanics for a Disk Fitted onto a Rotating Shaft,” Prikl. Mekh. Tekh. Fiz. 50 (4), 201–209 (2009) [J. Appl. Mech. Tech. Phys. 50 (4), 712–719 (2009)].

    MathSciNet  MATH  Google Scholar 

  6. D. Croccolo, M. De Agostinis, and N. Vincenzi, “Interference Fit Effect on Holed Single Plates Loaded with Tension-Tension Stresses,” Frattura Integrità Strutturale 6, 13–20 (2012).

    Article  Google Scholar 

  7. V. M. Mirsalimov and F. E. Veliev, “Reverse Problem of the Theory of Elasticity for Drawing Die Supported by a Cage,” Probl. Mashinostr. Nadezh. Mashin 41 (4), 64–72 (2012) [J. Machin. Manuf. Reliab. 41 (4), 318–325 (2012)].

    Google Scholar 

  8. D. Croccolo, M. De Agostinis, and N. Vincenzi, “Design and Optimization of Shaft-Hub Hybrid Joints for Lightweight Structures: Analytical Definition of Normalizing Parameters,” Int. J. Mech. Sci. 56, 77–85 (2012).

    Article  Google Scholar 

  9. B. Abazadeh, T. N. Chakherlou, and R. C. Alderliesten, “Effect of Interference Fitting and/or Bolt Clamping on the Fatigue Behavior of Al Alloy 2024-T3 Double Shear Lap Joints in Different Cyclic Load Ranges,” Int. J. Mech. Sci. 72, 2–12 (2013).

    Article  Google Scholar 

  10. A. Strozzi, A. Baldini, M. Giacopini, et al., “Achievement of a Uniform Contact Pressure in a Shaft-Hub Press-Fit,” Proc. Inst. Mech. Eng., Pt. C: J. Mech. Eng. Sci. 227 (3), 405–419 (2013).

    Article  Google Scholar 

  11. V. M. Mirsalimov and F. E. Veliyev, “Inverse Problem of Failure Mechanics for a Drawing Die Strengthened with a Holder,” Acta Polytech. Hungarica 10 (1), 121–138 (2013).

    Google Scholar 

  12. G. Biron, A. Vadean, and L. Tudose, “Optimal Design of Interference Fit Assemblies Subjected to Fatigue Loads,” Struct. Multidiscip. Opt. 47 (3), 441–451 (2013).

    Article  Google Scholar 

  13. H. Q. Xue, Q. Tao, and E. Bayraktar, “Effect of Interference-Fit on Fatigue Life for Composite Lap Joints,” Adv. Mater. Res. 939, 39–46 (2014).

    Article  Google Scholar 

  14. J. Jiang, Y. Bi, H. Dong, et al., “Influence of Interference Fit Size on Hole Deformation and Residual Stress in Hi-Lock Bolt Insertion,” Proc. Inst. Mech. Eng., Pt. C: J. Mech. Eng. Sci. 228 (18), 3296–3305 (2014).

    Article  Google Scholar 

  15. N. L. Pedersen, “On Optimization of Interference Fit Assembly,” Struct. Multidiscip. Opt. 54 (2), 349–359 (2016).

    Article  MathSciNet  Google Scholar 

  16. Y. Bi, J. Jiang, and Y. Ke, “Effect of Interference Fit Size on Local Stress in Single Lap Bolted Joints,” Adv. Mech. Eng. 7 (6), 1–12 (2015).

    Article  Google Scholar 

  17. X. Lü, J. Zhao, L. Hu, and H. Wang, “Effect of Interference Fits on the Fatigue Lives of Bolted Composite Joints,” J. Shanghai Jiaotong Univ. (Science) 21 (6), 648–654 (2016).

    Article  Google Scholar 

  18. S.-Y. Kim, B. He, D. (D.-W.) Kim, et al., “Bearing Strength of Interference-Fit Pin Joined Glass Fiber Reinforced Plastic Composites,” J. Compos. Mat. 54 (12), 1579–1591 (2020).

    Article  Google Scholar 

  19. P. Zou, Y. Li, K. Zhang, et al., “Influence of Interference-Fit Percentage on Stress and Damage Mechanism in Hi-Lock Pin Installation Process of CFRP,” J. Compos. Mater. 51 (25), 3525–3538 (2017).

    Article  ADS  Google Scholar 

  20. P. Zou, K. Zhang, Y. Li, et al., “Bearing Strength and Failure Analysis on the Interference-Fit Double Shear-Lap Pin-Loaded Composite,” Int. J. Damage Mech. 27 (2), 179–200 (2018).

    Article  Google Scholar 

  21. V. M. Mirsalimov, “The Inverse Doubly Periodic Problem of Fracture Mechanics for a Composite Reinforced with Unidirectional Fibres,” Math. Mech. Solids 24 (10), 3254–3278 (2019).

    Article  MathSciNet  Google Scholar 

  22. X. Wang, Z. Lou, X. Wang, et al., “Prediction of Stress Distribution in Press-Fit Process of Interference Fit with a New Theoretical Model,” Proc. Inst. Mech. Eng., Pt. C: J. Mech. Eng. Sci. 233 (8), 2834–2846 (2019).

    Article  Google Scholar 

  23. G. P. Cherepanov, Mechanics of Brittle Fracture (Nauka, Moscow, 1974; McGraw-Hill, 1979).

    Google Scholar 

  24. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity. Fundamental Equations Plane Theory of Elasticity Torsion and Bending (Nauka, Moscow, 1966; Noordhoff, 1977)

    MATH  Google Scholar 

  25. E. I. Grigolyuk and L. A. Fil’shtinskii, Perforated Plates and Shells (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  26. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshin, Stress Distribution near Cracks in Plates and Shells (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Mirsalimov.

Additional information

Original Russian Text © V.M. Mirsalimov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 61, No. 3, pp. 153–170, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirsalimov, V.M. Optimal Design of a Composite Reinforced by Unidirectional Fibers. J Appl Mech Tech Phy 61, 447–462 (2020). https://doi.org/10.1134/S0021894420030177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420030177

Keywords

Navigation