Skip to main content
Log in

Effect of the Microwave Heating on Diffusion Kinetics and Mechanical Properties of Borides in AISI 316L

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the effect of microwave heating on boride formation and diffusion kinetics in 316L stainless steel alloys was investigated. Boriding was carried out in microwave furnace with 2.9 kW power and 2.45 GHz frequency. Four different boriding temperatures (800, 850, 900 and 950 °C) were used. Boriding was performed for 2, 4 and 6 h for each temperature. Boron layer thicknesses of boride layers were determined by optical microscope. SEM images were taken from the cross sections of the borided samples. Boron activation energy was determined as 244.15 kJ/mol in microwave environment. Two times thicker boride layer was obtained by microwave boriding process compared to the conventional heating process. The mechanical properties of the boride layers formed by microwave boriding (Young’s modulus, hardness, yield strength, residual thermal stress) were determined by nanoindentation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gunes I, Trans Indian Inst Met 67 (2014) 359.

    CAS  Google Scholar 

  2. Ilaiyavel S, Atul S C and Chandra Sekar S P, Trans Indian Inst Met 72 (2019) 3007.

    CAS  Google Scholar 

  3. Kara R, Çolak F and Kayali Y, Trans Indian Inst Met 69 (2016) 1169.

    CAS  Google Scholar 

  4. Keddam M, Ortiz-Dominguez M, Elias-Espinosa M, Damian-Mejia O, Arenas-Flores A, Gomez-Vargaz O A, Abreu-Quijano M, Aldana-Gonzalez J I and Zuno-Siva J, Trans Indian Inst Met 68 (2015) 433.

    CAS  Google Scholar 

  5. Keddam M, Chegroune R, Kulka M, Panfil D, Ulker S and Taktak S, Trans Indian Inst Met 70 (2017) 1377.

    CAS  Google Scholar 

  6. Ozdemir O., Omar M A, Usta M, Zeytin S, Bindal C and Ucisik A H, Vacuum 83 (2009) 175.

    Google Scholar 

  7. Campos-Silva I, Martinez-Trinidad J, Donu-Ruiz M A, Rodriguez-Castro G, Hernandez-Sanchez E and Bravo-Barcenas O, Surf Coat Tech 206 (2011) 1809.

    CAS  Google Scholar 

  8. Chegroune R, Keddam M, Abdellah Z N, Ulker S, Taktak S and Gunes I, Mater Tehnol 50 (2016) 263.

    CAS  Google Scholar 

  9. Keddam M, Chegroune R, Kulka M, Makuch N, Panfil D, Siwak P and Taktak S, Trans Indian Inst Met 71 (2018) 79.

    CAS  Google Scholar 

  10. Kulka M, Mikolajczak D, Makuch N, Dziarski P, Miklaszewski A, Surf Coat Tech 291 (2016) 292.

    CAS  Google Scholar 

  11. Özbek I, Konduk B A, Bindal C and Ucisik, A H, Vacuum 65 (2002) 521.

    Google Scholar 

  12. Hernandez-Sanchez E, Dominguez-Galicai Y M, Orozco-Alvarez C, Carrera-Espinoza R, Herrera-Hernandez H and Velazquez J C, Adv Mater Sci Eng 2014 (2014) 1.

    Google Scholar 

  13. Rodríguez-Castro G A, Vega-Morón R., Meneses-Amador A, Jiménez-Díaz H W, Andraca-Adame J A, Campos-Silva I E and Pardavé M E, Surf Coat Tech 307 (2016) 491.

    Google Scholar 

  14. Campos-Silva I, Bernabe-Molina S, Bravo-Barcenas D, Martinez-Trinidad J, Rodriguez-Castro G and Meneses-Amador A, J Mater Eng Perform 25 (2016) 3852.

    CAS  Google Scholar 

  15. Mejia-Caballero I, Palomar-Pardave M, Martinez Trinidad J, Romero-Romo M, Pasten-Borja R P, Lartundo-Rojas L, Lopez-Garcia C and Campos-Silva I, Surf Coat Tech 280 (2015) 384.

    CAS  Google Scholar 

  16. Kayali Y, Büyüksağiş A, Güneş I and Yalçin Y, Prot Met Phys Chem 49 (2013) 348.

    CAS  Google Scholar 

  17. Reséndiz-Calderon C D; Rodríguez-Castro G A, Meneses-Amador A, Campos-Silva I E, Andraca-Adame J, Palomar-Pardavé M E, Gallardo-Hernández E A, J Mater Eng Perform 16 (2017) 5599.

    Google Scholar 

  18. Antonio C and Deam R T, Phys Chem Chem Phys 9 (2007) 2976.

    CAS  Google Scholar 

  19. Whittaker A G, Chem Mater 17 (2005) 3426.

    CAS  Google Scholar 

  20. Oghbaei M and Mirzaee O, J Alloys Compd 494 (2010) 175.

    CAS  Google Scholar 

  21. Gupta M and Keong E W W, Microwaves and Metals. John Wiley & Sons (Asia) Pte Ltd, Singapore (2007), p 256.

  22. Kayali Y, Vacuum 121 (2015) 129.

    CAS  Google Scholar 

  23. Ye, W., Huang, Z., Zhang, Q., Zhang, Q, J Wuhan Univ Technol Mater Sci Ed 23 (2008) 528.

    CAS  Google Scholar 

  24. Campos-Silva I, Ortiz-Dominguez M, Bravo-Barcenas O, Donu-Ruiz M A, Bravo-Barcenas D, Tapia-Quintero C and Jimenez-Reyes M Y, Surf and Coat Tech 205 (2010) 403.

    CAS  Google Scholar 

  25. Milinovic A, Krumes D, and Markovic R, Tehnički Vjesnik 19 (2012) 27.

    Google Scholar 

  26. Calık A, Gencer Y, Tarakci M, Gunduz K O and Gulec A E, Acta Phys Pol 123 (2013) 449.

    Google Scholar 

  27. Joshi A A and Hosmani S, Mater Manuf Process 29 (2014) 1062.

    CAS  Google Scholar 

  28. Türkmen İ and Yalamaç E, J Alloys Compd 744 (2018) 658.

    Google Scholar 

  29. Juijerm P, Kovove Mater 52 (2014) 231.

    CAS  Google Scholar 

  30. Kayalı Y, Phys Met Metallogr 114 (2013) 1061.

    Google Scholar 

  31. Gunes I, Ulker S and Taktak S, Mater Design 32 (2011) 2380.

    CAS  Google Scholar 

  32. Chen K S, Chen T C and Ou K S, Thin Solid Films 516(2008) 1931.

    CAS  Google Scholar 

  33. Rodriguez-Castro G, Jiménez-Tinoco L F, Méndez-Méndez J V, Arzate-Vazquez I, Meneses-Amador A, Martínez-Gutiérrez H and Campos-Silva I, Mater Res 18(6) (2015) 1346.

    Google Scholar 

  34. Tabor D, Hardness of Metals. Oxford. Clarendon Press 1951.

    Google Scholar 

  35. Rodríguez-Castro G, Campos-Silva I, Martínez-Trinidad J, Figueroa-López U, Arzate-Vázquez I, Hernández-Sánchez E and Hernández-Sánchez J, Kovove Mater 50 (2012) 357.

    Google Scholar 

  36. Choon J R, Broughton W H and Kutzak R, Metall Trans 2 (1971) 1979.

    Google Scholar 

  37. Bravo-Bárcenas D, Campos-Silva I, Cimenoglu H, Martínez-Trinidad J, Flores-Jiménez M and Martinez-Gutiérrez H, Surf Eng 32 (2016) 570.

    Google Scholar 

  38. Pavlina E J and Van Tyne C J, J Mater Eng Perform 17 (2008) 888.

    CAS  Google Scholar 

  39. Tsui T Y, Pharr G M, Oliver W C, Bhatia C S, White R L, Anders S, Anders A and Brown I G, Mat Res Soc Symp Proc 383 (1995) 447.

    CAS  Google Scholar 

  40. García-Léon R A, Martínez-Trinidad J, Campos-Silva I, Wong-Angel W, Revista Dyna 87 (2020) 34.

    Google Scholar 

  41. Rodríguez-Castro G, Campos-Silva I, Chávez-Gutiérrez E, Martínez-Trinidad J, Hernández-Sánchez E and Torres-Hernández A, Surf Coat Tech 215 (2013) 291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safiye Ipek Ayvaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipek Ayvaz, S., Aydin, I. Effect of the Microwave Heating on Diffusion Kinetics and Mechanical Properties of Borides in AISI 316L. Trans Indian Inst Met 73, 2635–2644 (2020). https://doi.org/10.1007/s12666-020-02072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02072-x

Keywords

Navigation