Skip to main content
Log in

A modified chaotic oscillator with megastability and variable boosting and its synchronisation using contraction theory-based control which is better than backstepping and nonlinear active control

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper reports a modified 2D periodically forced oscillator. Numerical simulation results using the phase portrait and Lyapunov exponents’ spectrum say that the proposed oscillator depicts megastability. Offset boosting in the new system is shown using the variable boostable phenomenon. Very limited research is available on such type of oscillator. Further, in this paper, a controller based on contraction theory is designed for the synchronisation between the two identical modified chaotic oscillators. The performances of the designed controller are compared with two widely used and well-known controllers for the chaotic systems. These controllers are (i) nonlinear active controller (NAC) and (ii) backstepping controller (BSC). It is found that the contraction theory-based controller performs better in terms of the less synchronisation time, negligible steady-state error and low control energy. Further, synchronisation between two identical Rossler chaotic systems is also presented to validate the effectiveness of the contraction theory. The simulation results validate the objectives of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. V Buyadzhi et al, J. Phys.: Conf. Ser. 905, 012007 (2017)

    Google Scholar 

  2. G Molnar, W Taylor and A Langworthy, Mayo Clinic Proceedings 47(10), 709 (1972)

    Google Scholar 

  3. E N Lorenz, J. Atmos. Sci. 20, 130 (1963)

    ADS  Google Scholar 

  4. Z Zhang, G Chen and S Yu, Int. J. Circ. Theor. Appl. 37, 31 (2009)

    Google Scholar 

  5. K Lochan, B Roy and B Subudhi, Ann. Rev. Control 42, 346 (2016)

    Google Scholar 

  6. Y Scharf, Chaos Solitons Fractals 95, 42 (2017)

    ADS  Google Scholar 

  7. G Baghdadi, S Jafari, J Sprott, F Towhidkhah and M H Golpayegani, Commun. Nonlinear Sci. Numer. Simul. 20, 174 (2015)

    ADS  MathSciNet  Google Scholar 

  8. S Torkamani, E A Butcher and M D Todd, Meccanica 51, 537 (2016)

    MathSciNet  Google Scholar 

  9. Y Liu and X Tong, IET Inform. Secur. 10, 433 (2016)

    Google Scholar 

  10. X Ge, B Lu, F Liu and X Luo, Nonlinear Dynam. 90, 1141 (2017)

    MathSciNet  Google Scholar 

  11. J P Singh and B K Roy, Nonlinear Dynam. 93, 112 (2018)

    Google Scholar 

  12. Y Chang, X Wang and D Xu, Int. J. Bifurc. Chaos 26,1650082 (2016)

    Google Scholar 

  13. S Tez and M Tez, Hypothesis 111(1–2), 67 (2018)

    Google Scholar 

  14. J P Singh, K Lochan, N V Kuznetsov and B K Roy, Nonlinear Dynam. 90, 1277 (2017)

    Google Scholar 

  15. P Prakash, J P Singh and B K Roy, Pramana – J. Phys. 92: 19 (2019)

    ADS  Google Scholar 

  16. P Prakash, J P Singh and B K Roy, Pramana – J. Phys. 91: 33 (2018)

    ADS  Google Scholar 

  17. J P Singh and B Roy, Optik. 127, 11982 (2016)

    ADS  Google Scholar 

  18. P Prakash, K Rajagopal, J Singh and B K Roy, AEU-Int. J. Electron. Commun. 92, 111 (2018)

    Google Scholar 

  19. S He, C Li, K Sun and S Jafari, Entropy 20, 556 (2018)

    ADS  Google Scholar 

  20. B Bao, T Jiang, Q Xu, M Chen, H Wu and Y Hu, Nonlinear Dynam. 86, 1711 (2016)

    Google Scholar 

  21. B Bao, T Jiang, G Wang, P Jin, H Bao and M Chen, Nonlinear Dynam. 89, 1157 (2017)

    Google Scholar 

  22. N Kuznetsov, G Leonov, M Yuldashev and R Yuldashev, Commun. Nonlinear Sci. Numer. Simul. 51, 39 (2017)

    ADS  Google Scholar 

  23. N V Stankevich, N V Kuznetsov, G A Leonov and L O Chua, Int. J. Bifurc. Chaos 27, 1730038 (2017)

    Google Scholar 

  24. N Kuznetsov, G Leonov, T Mokaev, A Prasad and M Shrimali, Nonlinear Dynam. 92, 267 (2018)

    Google Scholar 

  25. J Ma, X Wu, R Chu and L Zhang, Nonlinear Dynam. 76, 1951 (2014)

    Google Scholar 

  26. H Shao-Bo, S Ke-Hui and Z Cong-Xu, Chin. Phys. B 22, 050506 (2013)

    Google Scholar 

  27. W Ai, K Sun and Y Fu, Int. J. Mod. Phys. C 29, 1850049 (2018)

    ADS  Google Scholar 

  28. D Peng, K Sun, S He and A O Alamodi, Chaos Solitons Fractals 119, 163 (2019)

    ADS  MathSciNet  Google Scholar 

  29. J C Sprott, S Jafari, A J M Khalaf and T Kapitaniak, Eur. Phys. J. Spec. Top. 226, 1979 (2017).

    Google Scholar 

  30. C Li and J C Sprott, Phys. Lett. A 382, 581 (2018)

    ADS  MathSciNet  Google Scholar 

  31. C Li, W J-C Thio, J C Sprott, H H-C Iu and Y Xu, IEEE Access 6, 29003 (2018)

    Google Scholar 

  32. Z Wei, V-T Pham, A J M Khalaf, J Kengne and S Jafari, Int. J. Bifurc. Chaos 28, 1850085 (2018)

    Google Scholar 

  33. Z Wang, H R Abdolmohammadi, F E Alsaadi, T Hayat and V-T Pham, Chaos Solitons Fractals 110, 252 (2018)

    ADS  MathSciNet  Google Scholar 

  34. Y Tang, H R Abdolmohammadi, A J M Khalaf, Y Tian and T Kapitaniak, Pramana – J. Phys. 91: 11 (2018)

    ADS  Google Scholar 

  35. K Rajagopal, J P Singh, B K Roy and A Karthikeyan, Chin. J. Phys. 58, 263 (2019)

    Google Scholar 

  36. S Vaidyanathan, Advances and applications in chaotic systems (Springer, 2016) Vol. 471

  37. H Yu et al, Commun. Nonlinear Sci. Numer. Simul. 17, 1344 (2012)

    ADS  MathSciNet  Google Scholar 

  38. J Hu, L Liu, D-w Ma and N Ullah, Proc. Inst. Mech. Eng. C 229, 2314 (2015)

    Google Scholar 

  39. E Solak, Ö Morgül and U Ersoy, Phys. Lett. A 279, 47 (2001)

    ADS  Google Scholar 

  40. J Singh, V Pham, T Hayat, S Jafari, F Alsaadi and B K Roy, Chin. Phys. B 27, 100501 (2018)

    ADS  Google Scholar 

  41. P P Singh, J P Singh and B K Roy, Chaos Solitons Fractals 69, 31 (2014)

    ADS  MathSciNet  Google Scholar 

  42. J P Singh and B K Roy, Trans. Inst. Meas. Control 40, 3573 (2018)

    Google Scholar 

  43. Z Ruo-Xim and Y Shi-Ping, Chin. Phys. B 19, 020510 (2010)

    Google Scholar 

  44. R Hendel, F Khaber and N Essounbouli, Adaptive type-2 fuzzy second order sliding mode control for nonlinear uncertain chaotic system, arXiv:1601.04245 (2015)

  45. A Roy and K D Sharma, Int. J. Electron. 102, 312 (2015)

    Google Scholar 

  46. B Sharma and I Kar, IET Control Theory Appl. 4, 1005 (2010)

    MathSciNet  Google Scholar 

  47. M J Mahmoodabadi, R A Maafi and M Taherkhorsandi, Appl. Soft Computing 52, 1191 (2017)

    Google Scholar 

  48. X Zhang and B Cui, Appl. Math. Comput. 223, 180 (2013)

    MathSciNet  Google Scholar 

  49. A Wolf, J B Swift, H L Swinney and J A Vastano, Physica D 16, 285 (1985)

    ADS  MathSciNet  Google Scholar 

  50. W Lohmiller and J-J Slotine, Int. J. Control 78, 678 (2005)

    Google Scholar 

  51. W Lohmiller and J-J E Slotine, Automatica 34, 683 (1998)

    Google Scholar 

  52. W Lohmiller and J-J Slotine, IEEE Trans. Automatic Control 45, 984 (2000)

    MathSciNet  Google Scholar 

  53. J-J E Slotine, W Wang and K El-Rifai, Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (2004)

  54. K Li, M Small and X Fu, Phys. Rev. E 7, 056213 (2007)

    ADS  MathSciNet  Google Scholar 

  55. J Jouffroy and J-J Slotine, 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), 2537 (2004)

  56. W Wang and J-J E Slotine, Biol. Cybern. 92, 38 (2005)

    Google Scholar 

  57. J Jouffroy and T I Fossen, A tutorial on incremental stability analysis using contraction theory (2010)

  58. B B Sharma and I N Kar, International Conference on Pattern Recognition and Machine Intelligence (Springer, 2009) pp. 549–554

  59. B Sharma and I Kar, Chaos Solitons Fractals 41, 2437 (2009)

    ADS  MathSciNet  Google Scholar 

  60. B Sharma and I Kar, Nonlinear Dynam. 63, 429 (2011)

    MathSciNet  Google Scholar 

  61. M Zamani, W N D Van and R Majumdar, Systems Control Lett. 62, 949 (2013)

    MathSciNet  Google Scholar 

  62. Y Song, Chinese Intelligent Systems Conference (Springer, 2016) p. 425

  63. J P Singh and B K Roy, Nonlinear Dynam. 92, 373 (2018)

    Google Scholar 

  64. H Yao and Z Liu, Int. J. Nonlinear Sci. 9, 72 (2010)

    MathSciNet  Google Scholar 

  65. H Jiang and Q Bi, Nonlinear Dynam. 67, 781 (2012)

    MathSciNet  Google Scholar 

  66. P P Singh, J P Singh and B K Roy, IETE J. Res. 63, 853 (2017)

    Google Scholar 

  67. O E Rossler, Ann. N. Y. Acad. Sci. 316, 376 (1979)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.P., Jafari, S., Khalaf, A.J.M. et al. A modified chaotic oscillator with megastability and variable boosting and its synchronisation using contraction theory-based control which is better than backstepping and nonlinear active control. Pramana - J Phys 94, 132 (2020). https://doi.org/10.1007/s12043-020-01993-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01993-y

Keywords

PACS Nos

Navigation