Skip to main content

Advertisement

Log in

Chronic Oral Administration of Magnesium-L-Threonate Prevents Oxaliplatin-Induced Memory and Emotional Deficits by Normalization of TNF-α/NF-κB Signaling in Rats

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Antineoplastic drugs such as oxaliplatin (OXA) often induce memory and emotional deficits. At present, the mechanisms underlying these side-effects are not fully understood, and no effective treatment is available. Here, we show that the short-term memory deficits and anxiety-like and depression-like behaviors induced by intraperitoneal injections of OXA (4 mg/kg per day for 5 consecutive days) were accompanied by synaptic dysfunction and downregulation of the NR2B subunit of N-methyl-D-aspartate receptors in the hippocampus, which is critically involved in memory and emotion. The OXA-induced behavioral and synaptic changes were prevented by chronic oral administration of magnesium-L-threonate (L-TAMS, 604 mg/kg per day, from 2 days before until the end of experiments). We found that OXA injections significantly reduced the free Mg2+ in serum and cerebrospinal fluid (from ~ 0.8 mmol/L to ~ 0.6 mmol/L). The Mg2+ deficiency (0.6 mmol/L) upregulated tumor necrosis factor (TNF-α) and phospho-p65 (p-p65), an active form of nuclear factor-kappaB (NF-κB), and downregulated the NR2B subunit in cultured hippocampal slices. Oral L-TAMS prevented the OXA-induced upregulation of TNF-α and p-p65, as well as microglial activation in the hippocampus and the medial prefrontal cortex. Finally, similar to oral L-TAMS, intracerebroventricular injection of PDTC, an NF-κB inhibitor, also prevented the OXA-induced memory/emotional deficits and the changes in TNF-α, p-p65, and microglia. Taken together, the activation of TNF–α/NF–κB signaling resulting from reduced brain Mg2+ is responsible for the memory/emotional deficits induced by OXA. Chronic oral L-TAMS may be a novel approach to treating chemotherapy-induced memory/emotional deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tannock IF, Ahles TA, Ganz PA, Van Dam FS. Cognitive impairment associated with chemotherapy for cancer: report of a workshop. J Clin Oncol 2004, 22: 2233–2239.

    PubMed  Google Scholar 

  2. Ballenger JC, Davidson JR, Lecrubier Y, Nutt DJ, Jones RD, Berard RM, et al. Consensus statement on depression, anxiety, and oncology. J Clin Psychiatry 2001, 62 Suppl 8: 64–67.

    PubMed  Google Scholar 

  3. Zhang J, Zhou Y, Feng Z, Xu Y, Zeng G. Longitudinal trends in anxiety, depression, and quality of life during different intermittent periods of adjuvant breast cancer chemotherapy. Cancer Nurs 2018, 41: 62–68.

    PubMed  Google Scholar 

  4. Johnston IN, Tan M, Cao J, Matsos A, Forrest DRL, Si E, et al. Ibudilast reduces oxaliplatin-induced tactile allodynia and cognitive impairments in rats. Behav Brain Res 2017, 334: 109–118.

    CAS  PubMed  Google Scholar 

  5. Hipkins J, Whitworth M, Tarrier N, Jayson G. Social support, anxiety and depression after chemotherapy for ovarian cancer: a prospective study. Br J Health Psychol 2004, 9: 569–581.

    PubMed  Google Scholar 

  6. Hermelink K. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 2011, 117: 1103; author reply 1103–1104.

  7. Silberfarb PM. Chemotherapy and cognitive defects in cancer patients. Annu Rev Med 1983, 34: 35–46.

    CAS  PubMed  Google Scholar 

  8. Gothelf D, Rubinstein M, Shemesh E, Miller O, Farbstein I, Klein A, et al. Pilot study: fluvoxamine treatment for depression and anxiety disorders in children and adolescents with cancer. J Am Acad Child Adolesc Psychiatry 2005, 44: 1258–1262.

    PubMed  Google Scholar 

  9. Fountzilas E, Krishnan E, Janku F, Fu S, Karp DD, Naing A, et al. A phase I clinical trial of hepatic arterial infusion of oxaliplatin and oral capecitabine, with or without intravenous bevacizumab, in patients with advanced cancer and predominant liver involvement. Cancer Chemother Pharmacol 2018, 82: 877–885.

    CAS  PubMed  Google Scholar 

  10. Konner J, Schilder RJ, DeRosa FA, Gerst SR, Tew WP, Sabbatini PJ, et al. A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced-stage ovarian, primary peritoneal, or fallopian tube cancer. Gynecol Oncol 2008, 110: 140–145.

    CAS  PubMed  Google Scholar 

  11. Vogelzang NJ, Torkelson JL, Kennedy BJ. Hypomagnesemia, renal dysfunction, and Raynaud’s phenomenon in patients treated with cisplatin, vinblastine, and bleomycin. Cancer 1985, 56: 2765–2770.

    CAS  PubMed  Google Scholar 

  12. Hodgkinson E, Neville-Webbe HL, Coleman RE. Magnesium depletion in patients receiving cisplatin-based chemotherapy. Clin Oncol (R Coll Radiol) 2006, 18: 710–718.

    CAS  Google Scholar 

  13. Fakih M. Management of anti-EGFR-targeting monoclonal antibody-induced hypomagnesemia. Oncology (Williston Park) 2008, 22: 74–76.

    Google Scholar 

  14. Rodriguez-Moran M, Guerrero-Romero F. Elevated concentrations of TNF-alpha are related to low serum magnesium levels in obese subjects. Magnes Res 2004, 17: 189–196.

    CAS  PubMed  Google Scholar 

  15. Meyers CA, Albitar M, Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2005, 104: 788–793.

    CAS  PubMed  Google Scholar 

  16. Yang M, Kim J, Kim JS, Kim SH, Kim JC, Kang MJ, et al. Hippocampal dysfunctions in tumor-bearing mice. Brain Behav Immun 2014, 36: 147–155.

    CAS  PubMed  Google Scholar 

  17. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018, 18: 309–324.

    CAS  PubMed  Google Scholar 

  18. Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, et al. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010, 65: 165–177.

    CAS  PubMed  Google Scholar 

  19. Ying YL, Wei XH, Xu XB, She SZ, Zhou LJ, Lv J, et al. Over-expression of P2X7 receptors in spinal glial cells contributes to the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR) in rats. Exp Neurol 2014, 261: 836–843.

    CAS  PubMed  Google Scholar 

  20. Wang J, Liu Y, Zhou LJ, Wu Y, Li F, Shen KF, et al. Magnesium L-threonate prevents and restores memory deficits associated with neuropathic pain by inhibition of TNF-alpha. Pain Physician 2013, 16: E563–575.

    PubMed  Google Scholar 

  21. Abumaria N, Yin B, Zhang L, Li XY, Chen T, Descalzi G, et al. Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala. J Neurosci 2011, 31: 14871–14881.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu G, Weinger JG, Lu ZL, Xue F, Sadeghpour S. Efficacy and safety of MMFS-01, a synapse density enhancer, for treating cognitive impairment in older adults: A randomized, double-blind, placebo-controlled trial. J Alzheimers Dis 2016, 49: 971–990.

    CAS  PubMed  Google Scholar 

  23. Serefko A, Szopa A, Poleszak E. Magnesium and depression. Magnes Res 2016, 29: 112–119.

    CAS  PubMed  Google Scholar 

  24. Zhang XL, Ding HH, Xu T, Liu M, Ma C, Wu SL, et al. Palmitoylation of delta-catenin promotes kinesin-mediated membrane trafficking of Nav1.6 in sensory neurons to promote neuropathic pain. Sci Signal 2018, 11.

  25. Gui WS, Wei X, Mai CL, Murugan M, Wu LJ, Xin WJ, et al. Interleukin-1beta overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain 2016, 12.

  26. Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 1995, 121: 66–72.

    CAS  Google Scholar 

  27. Leung LW. Orthodromic activation of hippocampal CA1 region of the rat. Brain Res 1979, 176: 49–63.

    CAS  PubMed  Google Scholar 

  28. Abernethy MH, Fowler RT. Micellar improvement of the calmagite compleximetric measurement of magnesium in plasma. Clin Chem 1982, 28: 520–522.

    CAS  PubMed  Google Scholar 

  29. De Simoni A, My Yu L. Preparation of organotypic hippocampal slice cultures: interface method. Nature Protocols 2006, 1: 1439–1445.

    PubMed  Google Scholar 

  30. Phelps EA. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 2004, 14: 198–202.

    CAS  PubMed  Google Scholar 

  31. Ren WJ, Liu Y, Zhou LJ, Li W, Zhong Y, Pang RP, et al. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-alpha in rodents. Neuropsychopharmacology 2011, 36: 979–992.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee YS, Silva AJ. The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 2009, 10: 126–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu T, Li D, Zhou X, Ouyang HD, Zhou LJ, Zhou H, et al. Oral application of magnesium-L-threonate attenuates vincristine-induced allodynia and hyperalgesia by normalization of tumor necrosis factor-alpha/nuclear factor-kappaB signaling. Anesthesiol 2017, 126: 1151–1168.

    CAS  Google Scholar 

  34. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 2010, 107: 20518–20522.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Himmerich H, Fulda S, Linseisen J, Seiler H, Wolfram G, Himmerich S, et al. Depression, comorbidities and the TNF-alpha system. Eur Psychiatry 2008, 23: 421–429.

    CAS  PubMed  Google Scholar 

  36. Fourrier C, Bosch-Bouju C, Boursereau R, Sauvant J, Aubert A, Capuron L, et al. Brain tumor necrosis factor-alpha mediates anxiety-like behavior in a mouse model of severe obesity. Brain Behav Immun 2019, 77: 25–36.

    CAS  PubMed  Google Scholar 

  37. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron 2012, 76: 1057–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry 2019, 85: 443–453.

    PubMed  Google Scholar 

  39. Gibson EM, Monje M. Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment. Curr Opin Oncol 2019.

  40. McKee JA, Brewer RP, Macy GE, Borel CO, Reynolds JD, Warner DS. Magnesium neuroprotection is limited in humans with acute brain injury. Neurocrit Care 2005, 2: 342–351.

    PubMed  Google Scholar 

  41. Li Y, Liu J, Liu X, Su CJ, Zhang QL, Wang ZH, et al. Antidepressant-like action of single facial injection of botulinum neurotoxin A is associated with augmented 5-HT levels and BDNF/ERK/CREB pathways in mouse brain. Neurosci Bull 2019, 35: 661–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang CY, Chiu HF, Tsai SS, Wu TN, Chang CC. Magnesium and calcium in drinking water and the risk of death from esophageal cancer. Magnes Res 2002, 15: 215–222.

    CAS  PubMed  Google Scholar 

  43. Tukiendorf A, Rybak Z. New data on ecological analysis of possible relationship between magnesium in drinking water and liver cancer. Magnes Res 2004, 17: 46–52.

    CAS  PubMed  Google Scholar 

  44. Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys 2011, 512: 1–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Meffert MK, Baltimore D. Physiological functions for brain NF-kappaB. Trends Neurosci 2005, 28: 37–43.

    CAS  PubMed  Google Scholar 

  46. Shipton OA, Paulsen O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci 2014, 369: 20130163.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Xian-Guo Liu.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Huang, Z., Zhang, J. et al. Chronic Oral Administration of Magnesium-L-Threonate Prevents Oxaliplatin-Induced Memory and Emotional Deficits by Normalization of TNF-α/NF-κB Signaling in Rats. Neurosci. Bull. 37, 55–69 (2021). https://doi.org/10.1007/s12264-020-00563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00563-x

Keywords

Navigation