Skip to main content
Log in

Numerical Simulation of Solidification Structure of Continuously Cast Billet with Grain Motion

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The motion of free grains has a significant influence on the solidification structure, solute distribution, and defects of large casts. However, few studies have modeled the solidification structure of large casts considering grain motion. In this paper, taking into account the motion of free grains, a multiscale cellular automaton model is proposed to predict the solidification structure of continuously cast billets. The model is validated with experimental measurements. Then, the proposed model is adopted to investigate the solidification structure evolution of a wire steel 82b cast by a bow-type continuous caster with a billet section size of 160 mm × 160 mm. The results show that the growth of columnar grains in inner arc of billet strand is promoted by the sedimentation of free equiaxed grains. But the columnar grains in outer arc of strand are blocked once free grains nucleate before them. Thus, asymmetric morphology of solidification structure in the 82b billet with casting speed of 1.8 m/min is quantitatively determined and the length of the columnar grains in the inner arc and the outer arc of strand is 57.0 mm and 31.0 mm, respectively. Moreover, compared with the difference of cooling intensity between inner arc and outer arc in secondary cooling zone, the motion of free grains dominates the asymmetric morphology in the 82b billet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Stefan-Kharicha, A. Kharicha, M. Wu, and A. Ludwig: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1708-24.

    Article  Google Scholar 

  2. A. Ludwig, M. Wu, and A. Kharicha: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4854-67.

    Article  CAS  Google Scholar 

  3. G. Lesoult: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 19-29.

    Article  Google Scholar 

  4. D.G. Eskin, J. Zuidema, V.I. Savran, and L. Katgerman: Mater. Sci. Eng. A, 2004, vol. 384, pp. 232-44.

    Article  Google Scholar 

  5. B. Appolaire, V. Albert, H. Combeau, and G. Lesoult: Acta Mater., 1998, vol. 46, pp. 5851-62.

    Article  CAS  Google Scholar 

  6. B. Appolaire, V. Albert, H. Combeau, and G. Lesoult: ISIJ Int., 1999, vol. 39, pp. 263-70.

    Article  CAS  Google Scholar 

  7. H. Esaka, T. Wakabayashi, K. Shinozuka, and M. Tamura: ISIJ Int., 2003, vol. 43, pp. 1415-20.

    Article  CAS  Google Scholar 

  8. R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2515-24.

    Article  CAS  Google Scholar 

  9. D. Ruvalcaba, R. H. Mathiesen, D. G. Eskin, L. Arnberg, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 4287-92.

    Article  CAS  Google Scholar 

  10. L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann, and H. Nguyen-Thi: Acta Mater., 2016, vol. 110, pp. 44-52.

    Article  CAS  Google Scholar 

  11. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2754-64.

    Article  CAS  Google Scholar 

  12. C. Beckermann: JOM, 1997, vol. 49, pp. 13-7.

    Article  CAS  Google Scholar 

  13. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621-31.

    Article  CAS  Google Scholar 

  14. M. Wu, A. Ludwig, and A. Kharicha: Appl. Math. Model., 2017, vol. 41, pp. 102-20.

    Article  Google Scholar 

  15. J. Li, M. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Tran., 2014, vol. 72, pp. 668-79.

    Article  CAS  Google Scholar 

  16. H. Ge, F. Ren, J. Li, X. Han, M. Xia, and J. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1139-50.

    Article  Google Scholar 

  17. D. Jiang and M. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 444-55.

    Article  Google Scholar 

  18. D. Jiang, W. Wang, S. Luo, C. Ji, and M. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3120-31.

    Article  Google Scholar 

  19. R. Rojas, T. Takaki, and M. Ohno: J. Comput. Phys., 2015, vol. 298, pp. 29-40.

    Article  CAS  Google Scholar 

  20. T. Takaki, R. Sato, R. Rojas, M. Ohno, and Y. Shibuta: Comput. Mater. Sci., 2018, vol. 147, pp. 124-31.

    Article  CAS  Google Scholar 

  21. S. Luo, P. Wang, W. Wang, and M. Zhu: Metall. Mater. Trans. B (2020). https://doi.org/10.1007/s11663-020-01925-6.

    Article  Google Scholar 

  22. W. Wang, C. Ji, S. Luo, and M. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 200-12.

    Article  Google Scholar 

  23. S. Luo, M. Zhu, and S. Louhenkilpi: ISIJ Int., 2012, vol. 52, pp. 823-30.

    Article  CAS  Google Scholar 

  24. M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345-60.

    Article  CAS  Google Scholar 

  25. L. Liu, S. Pian, Z. Zhang, Y. Bao, R. Li, and H. Chen: Comput. Mater. Sci., 2018, vol. 146, pp. 9-17.

    Article  CAS  Google Scholar 

  26. T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka, and T. Aoki: J. Cryst. Growth, 2013, vol. 382, pp. 21-5.

    Article  CAS  Google Scholar 

  27. T. Takaki, R. Rojas, M. Ohno, T. Shimokawabe, and T. Aoki: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, p. 12066.

    Article  Google Scholar 

  28. Z.F. Zhang, J.M. Kim, and C.P. Hong: ISIJ Int., 2005, vol. 45, pp. 183-91.

    Article  CAS  Google Scholar 

  29. C.A. Gandin and M. Rappaz: Acta Metall. Mater., 1994, vol. 42, pp. 2233-46.

    Article  CAS  Google Scholar 

  30. G. Guillemot, C.A. Gandin, and H. Combeau: ISIJ Int., 2006, vol. 46, pp. 880-95.

    Article  CAS  Google Scholar 

  31. S. Chen, G. Guillemot, and C.A. Gandin: Acta Mater., 2016, vol. 115, pp. 448-67.

    Article  CAS  Google Scholar 

  32. C.A. Gandin and M. Rappaz: Acta Mater., 1997, vol. 45, pp. 2187-95.

    Article  CAS  Google Scholar 

  33. G. Guillemot, C.A. Gandin, and M. Bellet: J. Cryst. Growth, 2007, vol. 303, pp. 58-68.

    Article  CAS  Google Scholar 

  34. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57-63.

    Article  CAS  Google Scholar 

  35. C.A. Gandin, G. Guillemot, B. Appolaire, and N.T. Niane: Mater. Sci. Eng. A, 2003, vol. 342, pp. 44-50.

    Article  Google Scholar 

  36. J.S. Langer and J. Müller-Krumbhaar: J. Cryst. Growth, 1977, vol. 42, pp. 11-4.

    Article  CAS  Google Scholar 

  37. A. Haider and O. Levenspiel: Powder Technol., 1989, vol. 58, pp. 63-70.

    Article  CAS  Google Scholar 

  38. S. Ahuja: Ph.D. dissertation, Iowa University, Iowa City, Iowa, USA, 1992.

  39. W. Wang, S. Luo, and M. Zhu: Comput. Mater. Sci., 2014, vol. 95, pp. 136-48.

    Article  CAS  Google Scholar 

  40. D. Jiang and M. Zhu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3446-58.

    Article  Google Scholar 

  41. J.A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247-69.

    Article  CAS  Google Scholar 

  42. K. Schwerdtfeger: The Making, Shaping and Treating of Steel: Casting Volume-Chapter 4, 11th ed., AISE Steel Foundation, Pittsburgh, 2003, pp. 18-28.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of National Key Research and Development Plan (Nos. 2017YFB0304100, 2016YFB0300105), National Natural Science of China (Nos. 51674072, 51704151, 51804067), and Fundamental Research Funds for the Central Universities (Nos. N182504014, N170708020, N172503013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 21, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Luo, S., Wang, W. et al. Numerical Simulation of Solidification Structure of Continuously Cast Billet with Grain Motion. Metall Mater Trans B 51, 2882–2894 (2020). https://doi.org/10.1007/s11663-020-01953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01953-2

Navigation