Skip to main content
Log in

Syntheses and Crystal Structures of Rare-Earth Oxyapatites Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm)

  • Brief Communication
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Four different rare-earth oxyapatites of Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm) were synthesized using a solution-based method followed by drying, calcination, and high-temperature sintering in air. X-ray powder diffraction and Raman spectroscopy were performed on the synthesized oxyapatites. The RE oxyapatites crystallize in the hexagonal space group P63/m with similar unit cell parameters, increasing linearly with larger RE cations. The unit cell volumes increase linearly whereas the densities decrease nonlinearly with larger RE cations. Raman spectra showed intense bands of the symmetric bending and stretching modes of SiO4 at ~ 400 and 860 cm−1 regions, respectively. The bands generally shifted to higher frequencies with smaller RE cations in the structures.

Graphical Abstract

Rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm) crystallize in the hexagonal space group P63/m, and their unit cell parameters increase linearly with larger RE cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Kroll JO, Crum JV, Riley BJ, Neeway JJ, Asmussen RM, Liezers M (2019) J Nucl Mater 515:370–381

    Article  CAS  Google Scholar 

  2. Chong S, Riley BJ, Nelson ZJ, Perry SN (2020) Acta Crystallogr Sect E 76(3):339–343

    Article  CAS  Google Scholar 

  3. Zhang H-J, Fu L, Wang C-P, Fu H-F, Xie W-G (2014) Z Kristallogr NCS 229(3):191–192

    CAS  Google Scholar 

  4. Klee WE, Weitz G (1969) J Inorg Nucl Chem 31(8):2367–2372

    Article  CAS  Google Scholar 

  5. Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y (2004) Phys Rev Lett 92(25):257201

    Article  CAS  Google Scholar 

  6. Medarde ML (1997) J Phys: Condens Matter 9(8):1679–1707

    CAS  Google Scholar 

  7. McCarthy GJ, White WB, Pfoertsch DE (1978) Mater Res Bull 13(11):1239–1245

    Article  CAS  Google Scholar 

  8. Boatner LA, Beall GW, Abraham MM, Finch CB, Huray PG, Rappaz M (1980) Scientific basis for nuclear waste management. Springer, New York, pp 289–296

    Book  Google Scholar 

  9. Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) J Mater Chem A 5(11):1801–1805

    Article  CAS  Google Scholar 

  10. Nakayama S, Sakamoto M (1998) J Eur Ceram Soc 18(10):1413–1418

    Article  CAS  Google Scholar 

  11. Slater PR, Sansom JEH, Tolchard JR (2004) Chem Rec 4(6):373–384

    Article  CAS  Google Scholar 

  12. Sansom JEH, Kendrick E, Tolchard JR, Islam MS, Slater PR (2006) J Solid State Electrochem 10(8):562–568

    Article  CAS  Google Scholar 

  13. Brisse A, Sauvet A-L, Barthet C, Georges S, Fouletier J (2007) Solid State Ionics 178(23–24):1337–1343

    Article  CAS  Google Scholar 

  14. Wang J, Lin H, Huang Q, Xiao G, Xu J, Wang B, Hu T, Wang Y (2017) J Mater Chem C 5(7):1789–1797

    Article  CAS  Google Scholar 

  15. Sahu PK, Ramrakhiani M, Agrawal S (2019) J Fluoresc 29(5):1249–1255

    Article  CAS  Google Scholar 

  16. Deng B, Chen J, Liu H, Zhou C (2019) J Mater 30(8):7507–7513

    CAS  Google Scholar 

  17. Yu R, Li H, Ma H, Wang C, Wang H (2014) J Am Ceram Soc 97(4):1151–1156

    Article  CAS  Google Scholar 

  18. Yu R, Xue N, Wang T, Zhao Z, Wang J, Hei Z, Li M, Noh HM, Jeong JH (2015) Ceram Int 41(4):6030–6036

    Article  CAS  Google Scholar 

  19. Crum JV, Turo L, Riley B, Tang M, Kossoy A (2012) J Am Ceram Soc 95(4):1297–1303

    Article  CAS  Google Scholar 

  20. Crum J, Maio V, McCloy J, Scott C, Riley B, Benefiel B, Vienna J, Archibald K, Rodriguez C, Rutledge V (2014) J Nucl Mater 444(1–3):481–492

    Article  CAS  Google Scholar 

  21. Crum JV, Neeway JJ, Riley BJ, Zhu Z, Olszta MJ, Tang M (2016) J Nucl Mater 482:1–11

    Article  CAS  Google Scholar 

  22. Ahlborg NL, Zhu D (2013) Surf Coat Technol 237:79–87

    Article  CAS  Google Scholar 

  23. Xu Y, Hu X, Xu F, Li K (2017) Ceram Int 43(8):5847–5855

    Article  CAS  Google Scholar 

  24. Costa G, Harder BJ, Bansal NP, Kowalski BA, Stokes JL (2020) J Am Ceram Soc 103(2):1446–1453

    Article  CAS  Google Scholar 

  25. Neeway JJ, Asmussen RM, McElroy EM, Peterson JA, Riley BJ, Crum JV (2019) J Nucl Mater 515:227–237

    Article  CAS  Google Scholar 

  26. Ito J (1968) Am Mineral 53(5–6):890–907

    CAS  Google Scholar 

  27. Schroeder LW, Mathew M (1978) J Solid State Chem 26(4):383–387

    Article  CAS  Google Scholar 

  28. Fahey JA, Weber WJ, Rotella FJ (1985) J Solid State Chem 60(2):145–158

    Article  CAS  Google Scholar 

  29. Massoni N, Hegron R, Campayo L (2018) Acta Cryst E 74(7):955–959

    Article  CAS  Google Scholar 

  30. Peterson JA, Crum JV, Riley BJ, Asmussen RM, Neeway JJ (2018) J Nucl Mater 510:623–634

    Article  CAS  Google Scholar 

  31. Crum JV, Chong S, Peterson JA, Riley BJ (2019) Acta Cryst E 75(7):1020–1025

    Article  CAS  Google Scholar 

  32. Bruker AXS. TOPAS, Version 4.2. 2009.

  33. Shannon RD (1976) Acta Cryst A 32(5):751–767

    Article  Google Scholar 

  34. Vegard L (1921) Z Phys 5(1):17–26

    Article  CAS  Google Scholar 

  35. Orera A, Kendrick E, Apperley DC, Orera VM, Slater PR (2008) Dalton Trans 39:5296–5301

    Article  Google Scholar 

  36. Kidari A, Dussossoy JL, Brackx E, Caurant D, Magnin M, Bardez-Giboire I (2012) J Am Ceram Soc 95(8):2537–2544

    Article  CAS  Google Scholar 

  37. Lucazeau G, Sergent N, Pagnier T, Shaula A, Kharton V, Marques FMB (2007) J Raman Spectrosc 38(1):21–33

    Article  CAS  Google Scholar 

  38. Rodriguez-Reyna E, Fuentes A, Maczka M, Hanuza J, Boulahya K, Amador U (2006) J Solid State Chem 179(2):522–531

    Article  CAS  Google Scholar 

  39. Smirnov M, Sukhomlinov S, Mirgorodsky A, Masson O, Bechade E, Colas M, Merle-Méjean T, Julien I, Thomas P (2010) J Raman Spectrosc 41(12):1700–1707

    Article  Google Scholar 

  40. Zhang FX, Lang M, Zhang JM, Cheng ZQ, Liu ZX, Lian J, Ewing RC (2012) Phys Rev B 85(21):214116

    Article  Google Scholar 

  41. Wu R, Pan W, Ren X, Wan C, Qu Z, Du A (2012) Acta Mater 60(15):5536–5544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the U.S. Department of Energy Office of Nuclear Energy (DOE-NE). The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saehwa Chong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, S., Riley, B.J., Nienhuis, E.T. et al. Syntheses and Crystal Structures of Rare-Earth Oxyapatites Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm). J Chem Crystallogr 51, 293–300 (2021). https://doi.org/10.1007/s10870-020-00857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00857-y

Keywords

Navigation