Skip to main content

Advertisement

Log in

Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This study aimed to investigate the microstructure and mechanical properties of TixZrVNb (x = 1, 1.5, 2) refractory high-entropy alloys at room and elevated temperatures. The TiZrVNb alloy consisted of the body-centered cubic (bcc) matrix with a small amount of V2Zr phase. The Ti1.5ZrVNb and Ti2ZrVNb alloys exhibited a single-phase bcc structure. At room temperature, the tensile ductility of the as-cast alloys increased from 3.5% to 12.3% with the increase in the Ti content. The TixZrVNb alloys exhibited high yield strength at 600°C, and the ultimate yield strength was more than 900 MPa. Softening occurred at 800°C, but the ultimate yield strength could still exceed 200 MPa. Moreover, the TixZrVNb alloys displayed low densities but high specific yield strengths (SYSs). The lowest density of TixZrVNb alloys was only 6.12 g/cm3, but the SYS could reach about 180 MPa·cm3·g−1, which is better than those of most reported high-entropy alloys (HEAs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Micro-structural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377(2004), p. 213.

    Google Scholar 

  3. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, Cham, Switzerland, 2016.

    Google Scholar 

  4. O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, and H.L. Fraser, Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, Mater. Des., 139(2018), p. 498.

    CAS  Google Scholar 

  5. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater., 96(2015), p. 258.

    CAS  Google Scholar 

  6. X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zhao, Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy, Acta Mater., 141(2017), p. 59.

    CAS  Google Scholar 

  7. S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, and Y. Zhang, Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridg-man solidification, Intermetallics, 54(2014), p. 104.

    CAS  Google Scholar 

  8. M. Vaidya, K. Guruvidyathri, and B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, J. Alloys Compd., 774(2019), p. 856.

    CAS  Google Scholar 

  9. Z.Y. Rao, X. Wang, Q.J. Wang, T. Liu, X.H. Chen, L. Wang, and X.D. Hui, Microstructure, mechanical properties, and oxidation behavior of AlxCr0.4CuFe0.4MnNi high entropy alloys, Adv. Eng. Mater., 19(2017), No. 5, art. No. 1600726.

  10. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and wear behaviour of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59(2011), No. 16, p. 6308.

    CAS  Google Scholar 

  11. C.Y. Shang, E. Axinte, J. Sun, X.T. Li, P. Li, J.W. Du, P.C. Qiao, and Y. Wang, CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, Mater. Des., 117(2017), p. 193.

    CAS  Google Scholar 

  12. T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 549.

    CAS  Google Scholar 

  13. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448.

    CAS  Google Scholar 

  14. M.C. Gao, C.S. Carney, Ö.N. Dogan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman, Design of refractory high-entropy alloys, JOM, 67(2015), No. 11, p. 2653.

    CAS  Google Scholar 

  15. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd., 696(2017), p. 1139.

    CAS  Google Scholar 

  16. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130(2014), p. 277.

    CAS  Google Scholar 

  17. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698.

    CAS  Google Scholar 

  18. H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.-J. Christ, and M. Heilmaier, Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al, J. Alloys Compd., 661(2016), p. 206.

    CAS  Google Scholar 

  19. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A, 565(2013), p. 51.

    CAS  Google Scholar 

  20. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, and M.A. Tikhonovsky, Structure and mechanical properties of a lightweight AlNbTiV high entropy alloy, Mater. Lett., 142(2015), p. 153.

    CAS  Google Scholar 

  21. C.H. Chang, M.S. Titus, and J.W. Yeh, Oxidation behavior between 700 and 1300°C of refractory TiZrNbHfTa high-en-tropy alloys containing aluminum, Adv. Eng. Mater., 20(2018), No. 6, art. No. 1700948.

  22. Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, and T.J. Li, A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 3, p. 369.

    Google Scholar 

  23. O.N. Senkov, S. Rao, K.J. Chaput, and C. Woodward, Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys, Acta Mater., 151(2018), p. 201.

    CAS  Google Scholar 

  24. H. Chen, A. Kauffmann, S. Seils, T. Boll, C.H. Liebscher, I. Harding, K.S. Kumar, D.V. Szabô, S. Schlabach, S. Kafffmann-Weiss, F. Müller, B. Gorr, H.-J. Christ, and M. Heilmaier, Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al, Acta Mater., 176(2019), p. 123.

    CAS  Google Scholar 

  25. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res., 33(2018), No. 19, p. 3092.

    CAS  Google Scholar 

  26. N.Y. Yurchenko, N.D. Stepanov, A.O. Gridneva, M.V. Mishunin, G.A. Salishchev, and S.V. Zherebtsov, Effect of Cr and Zr on phase stability of refractory Al–Cr–Nb–Ti–V–Zr high-entropy alloys, J. Alloys Compd., 757(2018), p. 403.

    CAS  Google Scholar 

  27. N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0−1.5) high-entropy alloys, Mater. Sci. Eng. A, 704(2017), p. 82.

    CAS  Google Scholar 

  28. S.P. Wang and J. Xu, (TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modelling of solid solution strengthening, In-termetallics, 95(2018), p. 59.

    CAS  Google Scholar 

  29. J. Chen, X.Y. Zhou, W.L. Wang, B. Liu, Y.K. Lv, W. Yang, D.P. Xu, and Y. Liu, A review on fundamental of high entropy alloys with promising high-temperature properties, J. Alloys Compd., 760(2018), p. 15.

    CAS  Google Scholar 

  30. Y. Zou, P. Okle, H. Yu, T. Sumigawa, T. Kitamura, S. Maiti, W. Steurer, and R. Spolenak, Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies, Scripta Mater., 128(2017), p. 95.

    CAS  Google Scholar 

  31. K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, and Y.S. Na, Dual-phase high-entropy alloys for high-temperature structural applications, J. Alloys Compd., 728(2017), p. 1235.

    CAS  Google Scholar 

  32. N.P. Lyakishev, ed., Phase Diagrams of Binary Metal Systems: A Handbook, Q.W. Guo, trans., Chemical Industry Press, Beijing, 2009.

    Google Scholar 

  33. J.X. Cui, C.P. Guo, L. Zou, C.R. Li, and Z.M. Du, Experimental investigation and thermodynamic modeling of the Ti–V–Zr system, Calphad, 55(2016), p. 189.

    CAS  Google Scholar 

  34. W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data, Springer Berlin Heidelberg, New York, 2005.

    Google Scholar 

  35. Matweb Material Property Data [2020-07-18]. http://www.mat-web.com/

  36. O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, Acta Mater., 61(2013), No. 5, p. 1545.

    CAS  Google Scholar 

  37. D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, and T.J. Li, A novel series of refractory high-entropy alloys Ti2ZrHf0.5VNbx with high specific yield strength and good ductility, Acta Metall. Sinica, 32(2019), No. 8, p. 925.

    CAS  Google Scholar 

  38. Z.Q. Xu, Z.L. Ma, M. Wang, Y.W. Chen, Y.D. Tan, and X.W. Cheng, Design of novel low-density refractory high entropy alloys for high-temperature applications, Mater. Sci. Eng. A, 755(2019), p. 318.

    CAS  Google Scholar 

  39. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 47(2012), No. 9, p. 4062.

    CAS  Google Scholar 

  40. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758.

    CAS  Google Scholar 

  41. T.D. Huang, L. Jiang, C.L. Zhang, H. Jiang, Y.P. Lu, and T.J. Li, Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Sci. China, Technol. Sci., 61(2018), p. 117.

    CAS  Google Scholar 

  42. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, and P.K. Liaw, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenisation, Mater. Sci. Eng. A, 647(2015), p. 229.

    CAS  Google Scholar 

  43. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des., 57(2014), p. 67.

    CAS  Google Scholar 

  44. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile properties of an AlCr-CuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. A, 533(2012), p. 107.

    CAS  Google Scholar 

  45. J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu, Microstructures and compressive properties of multicom-ponent AlCoCrCuFeNiMox alloys, J. Alloys Compd., 497(2010), No. 1–2, p. 52.

    CAS  Google Scholar 

  46. N.D. Stepanov, N.Y. Yurchenko, V.S. Sokolovsky, M.A. Tikhonovsky, and G.A. Salishchev, An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility, Mater. Lett., 161(2015), p. 136.

    CAS  Google Scholar 

  47. N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, and S.V. Zherebtsov, Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy, Mater. Lett., 188(2017), p. 162.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Magnetic Confinement Fusion Energy R&D Program (No. 2018YFE0312400), the National Natural Science Foundation of China (Nos. 51822402 and 51671044), the National Key Research and Development Program of China (Nos. 019YFA0209901 and 2018YFA0702901), the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University (Grant No. SKLSP201902), the Liaoning Revitalization Talents Program (No. XLYC1807047), and the Fund of Science and Technology on Reactor Fuel and Materials Laboratory (No. STRFML-2020-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-ping Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Td., Wu, Sy., Jiang, H. et al. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys. Int J Miner Metall Mater 27, 1318–1325 (2020). https://doi.org/10.1007/s12613-020-2040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2040-1

Keywords

Navigation