Skip to main content
Log in

Abstract

Refractory high-entropy alloys (RHEAs) are emerging as new materials for high temperature structural applications because of their stable mechanical and thermal properties at temperatures higher than 2273 K. In this study, the mechanical properties of MoNbTaTiW REDEA are examined by applying calculations based on first-principles density functional theory (DFT) and using a large unit cell with 100 randomized atoms. The phase calculation of MoNbTaTiW with CALPHAD method shows the existence of a stable body-centered cubic structure at a high temperature and a hexagonal closely packed phase at a low temperature. The predicted phase, shear modulus, Young’s modulus, Poisson’s ratio, and hardness values are consistent with available experimental results. The linear thermal expansion coefficient, vibrational entropy, and vibrational heat capacity of MoNbTaTiW RHEA are investigated in accordance with Debye-Grüneisen theory. These results may provide a basis for future research related to the application of RHEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    CAS  Google Scholar 

  2. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904.

  3. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59(2011), No. 16, p. 6308.

    CAS  Google Scholar 

  4. L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics, 17(2009), No. 4, p. 266.

    CAS  Google Scholar 

  5. C.W. Jung, K. Kang, A. Marshal, K.G. Pradeep, J.-B. Seol, H.M. Lee, and P.-P. Choi, Effects of phase composition and elemental partitioning on soft magnetic properties of AlFe-CoCrMn high entropy alloys, Acta Mater., 171(2019), p. 31.

    CAS  Google Scholar 

  6. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698.

    CAS  Google Scholar 

  7. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics, 84(2017), p. 153.

    CAS  Google Scholar 

  8. Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, and K.F. Yao, Microstructures and mechanical properties of TixN-bMoTaW refractory high-entropy alloys, Mater. Sci. Eng. A, 712(2018), p. 380.

    CAS  Google Scholar 

  9. A. Mishra, G. Priyadarshan, D. Clark, Y. Lu, and R.H. Shi, Theoretical investigations on structural stability and elastic properties of MoNbTaW-X (= Ti/V) high entropy alloys, J. Mater. Sci. Res. Rev., 4(2019), No. 2, p. 1.

    Google Scholar 

  10. J.-O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273.

    CAS  Google Scholar 

  11. H. Larsson, A model for 1D multiphase moving phase boundary simulations under local equilibrium conditions, Calphad, 47(2014), p. 1.

    CAS  Google Scholar 

  12. Y. Lederer, C. Toher, K.S. Vecchio, and S. Curtarolo, The search for high entropy alloys: A high-throughput ab-initio approach, Acta Mater., 159(2018), p. 364.

    CAS  Google Scholar 

  13. H.H. Mao, H.L. Chen, and Q. Chen, TCHEA1: A thermodynamic database not limited for “high entropy” alloys, J. Phase Equilib. Diffus., 38(2017), p. 353.

    CAS  Google Scholar 

  14. H.L. Chen, H.H. Mao, and Q. Chen, Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips, Mater. Chem. Phys., 210(2018), p. 279.

    CAS  Google Scholar 

  15. M.C. Gao, B. Zhang, S. Yang, and S.M. Guo, Senary refractory high-entropy alloy HfNbTaTiVZr, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3333.

    CAS  Google Scholar 

  16. A. Abu-Odeh, E. Galvan, T. Kirk, H. Mao, Q. Chen, P. Mason, R. Malak, and R. Arróyave, Efficient exploration of the high entropy alloy composition-phase space, Acta Mater., 152(2018), p. 41.

    CAS  Google Scholar 

  17. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136(1964), No. 3B, p. B864.

    Google Scholar 

  18. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133.

    Google Scholar 

  19. U. Bhandari, C.Y. Zhang, and S.Z. Yang, Mechanical and thermal properties of low-density Al20+xCr20−xMo20−yTi20V20+y alloys, Crystals, 10(2020), No. 4, p. 278.

    CAS  Google Scholar 

  20. P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953.

    Google Scholar 

  21. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46(1992), No. 11, p. 6671.

    CAS  Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.

    CAS  Google Scholar 

  23. K.E. Donald, The Art of Computer Programming, Addison Wesley, Boston, 1968.

    Google Scholar 

  24. Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations, Phys. Rev. B, 63(2001), No. 17, art. No. 174103.

  25. Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B, 65(2002), No. 10, art. No. 104104.

  26. O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 24(1963), No. 7, p. 909.

    CAS  Google Scholar 

  27. K.W. Andrews, Elastic moduli of polycrystalline cubic metals, J. Phys. D: Appl. Phys., 11(1978), No. 18, p. 2527.

    CAS  Google Scholar 

  28. F. Drucker, E. Grüneisen, F. Körber, P. Kohnstamm, K. Scheel, E. Schrödinger, F. Simon, J.D. van der Waals, and F. Henning, Thermische Eigenschaften der Stoffe, H. Geiger and K. Scheel, eds., Springer, Berlin, 1926.

  29. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P.C. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics, 11(2003), No. 1, p. 23.

    CAS  Google Scholar 

  30. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders College Publishing, Philadelphia, 1976.

    Google Scholar 

  31. X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2–3, p. 233.

    CAS  Google Scholar 

  32. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505.

  33. Z.J. Wang, Y.H. Huang, Y. Yang, J.C. Wang, and C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys, Scripta Mater., 94(2015), p. 28.

    CAS  Google Scholar 

  34. A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817.

    CAS  Google Scholar 

  35. G.H. Gulliver, The quantitative effect of rapid cooling upon the constitution of binary alloys, J. Inst. Met., 9(1913), No. 1, p. 120.

    Google Scholar 

  36. E. Scheil, Bemerkungen zur schichtkristallbildung, Z. Metallkd., 34(1942), No. 3, p. 70.

    Google Scholar 

  37. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1956.

    Google Scholar 

  38. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(1954), No. 367, p. 823.

    CAS  Google Scholar 

  39. Y.L. Hu, L.H. Bai, Y.G. Tong, D.Y. Deng, X.B. Liang, J. Zhang, Y.J. Li, and Y.X. Chen, First-principle calculation investigation of NbMoTaW based refractory high entropy alloys, J. Alloys Compd., 827(2020), art. No. 153963.

  40. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton, Tensile properties and fracture toughness of TiAl alloys with controlled microstructures, Intermetalics, 4(1996), No. 6, p. 429.

    CAS  Google Scholar 

  41. J.H. Luan, Z.B. Jiao, W.H. Liu, Z.P. Lu, W.X. Zhao, and C.T. Liu, Compositional and microstructural optimization and mechanical-property enhancement of cast Ti alloys based on Ti-6Al-4V alloy, Mater. Sci. Eng. A, 704(2017), p. 91.

    CAS  Google Scholar 

  42. Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui, Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, Mater. Des., 83(2015), p. 651.

    CAS  Google Scholar 

  43. C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, and J.W. Yeh, Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett., 175(2016), p. 284.

    CAS  Google Scholar 

  44. D. Nguyen-Manh, M. Mrovec, and S.P. Fitzgerald, Dislocation driven problems in atomistic modelling of materials, Mater. Trans., 49(2008), No. 11, p. 2497.

    CAS  Google Scholar 

  45. V. Tvergaard and J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc., 71(1988), No. 3, p. 157.

    CAS  Google Scholar 

  46. J. Lei, S. Guo, E. Khosravi, and S. Yang, The stability and stiffness of TaNbHfZrTi alloy from first principles simulation, [in] Materials Science & Technology 2012 (MS&T’12) Conference Proceedings, Pittsburgh, 2012, p. 196.

  47. F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 71(1947), No. 11, p. 809.

    CAS  Google Scholar 

  48. S. Wang, Y.H. Zhao, H. Hou, Z.Q. Wen, P.L. Zhang, and J.Q. Liang, Effect of anti-site point defects on the mechanical and thermodynamic properties of MgZn2, MgCu2 Laves phases: A first-principle study, J. Solid State Chem., 263(2018), p. 18.

    CAS  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the NSF EPSCoR CIMM project under the award # OIA-1541079 and DoD support under the W911NF1910005 contract. Computational simulations were supported by the Louisiana Optical Network Infrastructure (LONI) with the supercomputer allocation loni_mat_bio12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, U., Zhang, C., Guo, S. et al. First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW. Int J Miner Metall Mater 27, 1398–1404 (2020). https://doi.org/10.1007/s12613-020-2077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2077-1

Keywords

Navigation