Skip to main content

Advertisement

Log in

Abstract

The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys (HEAs) subjected to cold rolling was investigated. The homogenized Al0.6CoCrFeNi alloys consisted of face-centered-cubic and body-centered-cubic phases, presenting similar mechanical behavior as the as-cast state. The yield and tensile strengths of the alloys could be dramatically enhanced to ∼1205 MPa and ∼1318 MPa after 50% rolling reduction, respectively. A power-law relationship was discovered between the strain-hardening exponent and rolling reduction. The tensile strengths of this dual-phase HEA with different cold rolling treatments were predicted, mainly based on the Hollomon relationship, by the strain-hardening exponent, and showed good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Toda-Caraballo, A general formulation for solid solution hardening effect in multicomponent alloys, Scripta Mater., 127(2017), p. 113.

    Article  CAS  Google Scholar 

  2. X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2–3, p. 233.

    Article  CAS  Google Scholar 

  3. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 6, p. 534.

    Article  CAS  Google Scholar 

  4. H.Y. Yasuda, H. Miyamoto, K. Cho, and T. Nagase, Formation of ultrafine-grained microstructure in Al0.3CoCrFeNi high entropy alloys with grain boundary precipitates, Mater. Lett., 199(2017), p. 120.

    Article  CAS  Google Scholar 

  5. M. Klimova, N. Stepanov, D. Shaysultanov, R. Chernichenko, N. Yurchenko, V. Sanin, and S. Zherebtsov, Microstructure and mechanical properties evolution of the Al, C-containing CoCrF-eNiMn-type high-entropy alloy during cold rolling, Materials, 11(2017), No. 1, p. 53.

    Article  Google Scholar 

  6. B. Jia, X.J. Liu, H. Wang, Y. Wu, and Z.P. Lu, Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion, Sci. China Technol. Sci., 61(2018), No. 2, p. 179.

    Article  CAS  Google Scholar 

  7. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187.

    Article  CAS  Google Scholar 

  8. H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678.

  9. J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.-J. Lee, and H.S. Kim, Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures, Acta Mater., 161(2018), p. 388.

    Article  CAS  Google Scholar 

  10. M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scripta Mater., 72–73(2014), p. 5.

    Article  Google Scholar 

  11. Z.M. Li and D. Raabe, Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties, JOM, 69(2017), No. 11, p. 2099.

    Article  CAS  Google Scholar 

  12. Z.M. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep., 7(2017), art. No. 40704.

  13. Z.M. Li, C.C. Tasan, K.G. Pradeep, and D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater., 131(2017), p. 323.

    Article  CAS  Google Scholar 

  14. C. Zhang, C.Y. Zhu, T. Harrington, and K. Vecchio, Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength—ductility synergy, Scripta Mater., 154(2018), p. 78.

    Article  Google Scholar 

  15. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Scienci, 362(2018), No. 6417, p. 933.

    Article  CAS  Google Scholar 

  16. B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, and J.W. Qiao, A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at cryogenic temperature, J. Alloys Compd., 827(2020), art. No. 153981.

  17. J.X. Hou, M. Zhang, S.G. Ma, P.K. Liaw, Y. Zhang, and J.W. Qiao, Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling, Mater. Sci. Eng. A, 707(2017), p. 593.

    Article  CAS  Google Scholar 

  18. Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M. Ziomek-Moroz, and J.W. Qiao, Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy, Mater. Sci. Eng. A, 645(2015), p. 163.

    Article  CAS  Google Scholar 

  19. Z.W. Wang and I. Baker, Effects of annealing and thermo-mechanical treatment on the microstructures and mechanical properties of a carbon-doped FeNiMnAl multi-component alloy, Mater. Sci. Eng. A, 693(2017), p. 101.

    Article  CAS  Google Scholar 

  20. J.X. Hou, X.H. Shi, J.W. Qiao, Y. Zhang, P.K. Liaw, and Y.C. Wu, Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys, Mater. Des., 180(2019), art. No. 107910.

  21. P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, and P.K. Liaw, Enhanced strength—ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), art. No. 489.

  22. L. Wang, J.W. Qiao, S.G. Ma, Z.M. Jiao, T.W. Zhang, G. Chen, D. Zhao, Y. Zhang, and Z.H. Wang, Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading, Mater. Sci. Eng. A, 727(2018), p. 208.

    Article  CAS  Google Scholar 

  23. J. Yang, J.W. Qiao, S.G. Ma, G.Y. Wu, D. Zhao, and Z.H. Wang, Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms, J. Alloys Compd., 795(2019), p. 269.

    Article  CAS  Google Scholar 

  24. S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, and P.K. Liaw, Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater. Res. Lett., 5(2017), No. 4, p. 276.

    Article  Google Scholar 

  25. W. Abuzaid and H. Sehitoglu, Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 720(2018), p. 238.

    Article  CAS  Google Scholar 

  26. A. Takeuchi and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans. JIM, 41(2000), No. 11, p. 1372.

    Article  CAS  Google Scholar 

  27. J.H. Hollomon, Tensile deformation, Trans. AIME, 162(1945), p. 268.

    Google Scholar 

  28. Z.H. Stachurski, Mechanical behavior of materials, Mater. Today, 12(2009), No. 3, p. 44.

    Article  Google Scholar 

  29. W.D. Callister and D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 3rd ed., John Wiley & Sons, Inc., New York, 2008, p. 260.

    Google Scholar 

  30. A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of ultra-fine grain microstructures in Al-Mg alloys by coventional rolling, Acta Mater., 50(2002), No. 18, p. 4461.

    Article  CAS  Google Scholar 

  31. M. Yang, The application of stress strain curve and strain-hardening exponent in plastic working, Mod. Mach., 2013, No. 4, p. 20.

  32. Z.P. Zhang, W.Z. Zhao, Q. Sun, and C.W. Li, Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials, J. Mater. Eng. Perform., 15(2006), No. 1, p. 19.

    Article  Google Scholar 

  33. Z.P. Zhang, W.H. Wu, D.L. Chen, Q. Sun, and W.Z. Zhao, New formula relating the yield stress-strain with the strength coefficient and the strain-hardening exponent, J. Mater. Eng. Perform., 13(2004), No. 4, p. 509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shanxi Province, China (Nos. 201901D111105 and 201901D111114), Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi Province, China (2019), the Opening Project of the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (No. KFJJ20-13M), the Graduate Science and Technology Innovation Fund Project of Shanxi Province, China (No. 2019BY044), and the State Key Lab of Advanced Metals and Materials of China (No. 2020-Z09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-wei Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Hou, Jx., Yang, Hj. et al. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys. Int J Miner Metall Mater 27, 1341–1346 (2020). https://doi.org/10.1007/s12613-020-2084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2084-2

Keywords

Navigation