Skip to main content

Advertisement

Log in

Human thermal sensation over a mountainous area, revealed by the application of ANNs: the case of Ainos Mt., Kefalonia Island, Greece

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Mt. Ainos in Kefalonia Island, Greece, hosts a large variety of plant species, some of them endemic to the region. Because of its rich biodiversity, a large portion of the mountain area is designated as National Park and is protected from human activities such as hunting or logging. Therefore, the area presents a lot of opportunities for ecotourist activities, such as trekking, birdwatching, and mountain climbing. In order to estimate its touristic activities potential, it is essential to assess the mountain’s biometeorological conditions. To achieve that, the human thermal index PET (physiologically equivalent temperature) was used, which is based on a human energy balance model. However, it is difficult to get the specific meteorological data over mountainous areas (air temperature, humidity, wind speed, and global solar radiation), appropriate as input variables for PET modeling. In order to overcome this limitation, artificial neural networks (ANNs) were developed for the estimation of PET index in ten sites within the Ainos National Park. In the process, the spatiotemporal distributions of the PET thermal index were illustrated, taking into consideration the ANN modeling. The findings of the performed analysis shed light that Mt. Ainos offers the greatest touristic opportunities from May to September, when thermal comfort conditions appear. The study also proves that the highest frequency of thermal comfort appears within the aforementioned time period over the highest altitudes, while on the contrary, slightly warm class appears as the altitude decreases on both sides of the mountain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas T, Kavrakov I, Morgenthal G, Lahmer T (2020) Prediction of aeroelastic response of bridge decks using artificial neural networks. Comput Struct 231(2020):106198

    Article  Google Scholar 

  • Almeida SP, Casimiro E, Calheiros J (2010) Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal. Environ Health A Glob Access Sci Source 9:12. https://doi.org/10.1186/1476-069X-9-12

    Article  Google Scholar 

  • Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, Kirchmayer U, Ballester F, Cadum E, Goodman PG, Hojs A, Sunyer J, Tiittanen P, Michelozzi P (2008) Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol 168:1397–1408. https://doi.org/10.1093/aje/kwn266

    Article  CAS  Google Scholar 

  • Bach AJ, Price LW (2013) Mountain climate. In: Price LW, Friend DA, Byers AC, Price MF, Kohler T (eds) Mountain geography: physical and human dimensions 41–84. University of California Press

  • Barry R (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, 506 pp, Cambridge. https://doi.org/10.1017/CBO9780511754753

    Book  Google Scholar 

  • Bleta A, Nastos PT, Matzarakis A (2014) Assessment of bioclimatic conditions on Crete Island, Greece. Reg Environ Chang 14:1967–1981. https://doi.org/10.1007/s10113-013-0530-7

    Article  Google Scholar 

  • Bogdanović Protić IS, Vukadinović AV, Radosavljević JM, Alizamir M, Mitković MP (2016) Forecasting of outdoor thermal comfort index in urban open spaces. The Nis Fortress case study. Therm Sci 20(5):1531–1539

    Article  Google Scholar 

  • Chan SY, Chau CK (2019) Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Build Environ 164(2019):106364. https://doi.org/10.1016/j.buildenv.2019.106364

    Article  Google Scholar 

  • Charalampopoulos I, Tsiros I, Chronopoulou-Sereli A, Matzarakis A (2015) A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens. Int J Biometeorol 59:1223–1236. https://doi.org/10.1007/s00484-014-0934-1

    Article  Google Scholar 

  • Chronopoulos K, Kamoutsis A, Matsoukis A, Manoli E (2012a) An artificial neural network model application for the estimation of thermal comfort conditions in mountainous regions, Greece. Atmosfera 25:171–181

    Google Scholar 

  • Chronopoulos KI, Kamoutsis AP, Matsoukis AS (2012b) Thermal comfort estimation in relation to different orientation in mountainous regions in Greece by using artificial neural networks. Glob Nest J 14:532–539. https://doi.org/10.30955/gnj.000743

    Article  Google Scholar 

  • Dacanal C, Labaki LC, Leite da Silva TM (2010) Vamos passear na floresta! O conforto térmico em fragmentos florestais urbanos (Let’s take a walk through the forest! Thermal comfort in urban forest fragments). Ambient Constr, Porto Alegre 10(2):115–132

    Article  Google Scholar 

  • Demir M, Dindaroglu T, Guven M (2014) The importance of forest lands in terms of bioclimatic comfort: sample of Aras Basin. J Hum Ecol 45(1):7–16. https://doi.org/10.1080/09709274.2014.11906674

    Article  Google Scholar 

  • Didaskalou EA, Nastos PT (2003) The role of climatic and bioclimatic conditions in the development of health tourism product. Anatolia 14:107–126. https://doi.org/10.1080/13032917.2003.9687020

    Article  Google Scholar 

  • Endler C, Matzarakis A (2011a) Climate and tourism in the Black Forest during the warm season. Int J Biometeorol 55:173–186

    Article  Google Scholar 

  • Endler C, Matzarakis A (2011b) Climatic and tourism related changes in the Black Forest: winter season. Int J Biometeorol 55:339–351

    Article  Google Scholar 

  • Fanger OP (1972) Thermal comfort: analysis and applications in environmental engineering. Appl Ergon 3:181. https://doi.org/10.1016/s0003-6870(72)80074-7

    Article  Google Scholar 

  • Fröhlich D, Matzarakis A (2013) Modeling of changes in thermal bioclimate: examples based on urban spaces in Freiburg, Germany. Theor Appl Climatol 111:547–558. https://doi.org/10.1007/s00704-012-0678-y

    Article  Google Scholar 

  • Fung CKW, Jim CY (2019) Microclimatic resilience of subtropical woodlands and urban-forest benefits. Urban For Urban Green 42:100–112

    Article  Google Scholar 

  • Gagge AP, Stolwijk JAJ, Nishi Y (1971) Effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–263

    Google Scholar 

  • Gössling S, Hall CM (2005) Tourism and global environmental change: ecological, social, economic and political interrelationships. In: Tourism and global environmental change: ecological, social, economic and political interrelationships. pp 1–323

  • Hamilton JM, Lau MA (2005) The role of climate information in tourist destination choice decision making. In: Proceedings of the 17th International Congress of Biometeorology (ICB 2005) GarmischPartenkirchen, Germany, 9–5 September 2005, Deutscher Wetterdienst, Offenbach am Main, pp 608–611

  • Hecht-Nielsen R (1990) Neurocomputing, Addison-Wesley, ISBN 0201093553, Reading

  • Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75. https://doi.org/10.1007/s004840050118

    Article  Google Scholar 

  • Jendritzky G, Havenith G, Weihs P, Batchvarova E, De Dear R (2008) The Universal Thermal Climate Index UTCI—goal and state of COST action 730 and ISB commission 6. Proceedings 18th international congress biometeorology ICB 2008, September 22–26, 2008, Tokyo

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428

    Article  Google Scholar 

  • Kamoutsis A, Matsoukis A, Charalampopoulos I, Chronopoulou-Sereli A (2007) Biometeorological conditions in mountainous communities and adjacent urban center in Greece by the use of indices: the case study of mountainous Nafpaktia district. In: A Matzarakis, CR de Freitas and D Scott (eds) Developments in tourism climatology, 3rd International Workshop on Climate, Tourism and Recreation. Commission on Climate, Tourism and Recreation International Society of Biometeorology, Freiburg, Germany, pp 144–149

  • Kariminia S, Shamshirband S, Motamedi S, Hashim R, Roy C (2016) A systematic extreme learning machine approach to analyze visitors’ thermal comfort at a public urban space. Renew Sust Energ Rev 58:751–760. https://doi.org/10.1016/j.rser.2015.12.321

    Article  Google Scholar 

  • Mahgoub AO, Gowid S, Ghani S (2020) Global evaluation of WBGT and SET indices for outdoor environments using thermal imaging and artificial neural networks. Sustain Cities Soc 60(2020):102182. https://doi.org/10.1016/j.scs.2020.102182

    Article  Google Scholar 

  • Matzarakis A, Nastos P (2011) Analysis of tourism potential for Crete Island, Greece. Glob Nest J 13:141–149. https://doi.org/10.30955/gnj.000774

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. https://doi.org/10.1007/s00484-009-0261-0

    Article  Google Scholar 

  • Matzarakis A, Hämmerle M, Endler C, Muthers S, Koch E (2012) Assessment of tourism and recreation destinations under climate change conditions in Austria. Meteorol Z 21:157–165

    Article  Google Scholar 

  • Matzarakis A, Endler C, Nastos PT (2014) Quantification of climate-tourism potencial for Athens, Greece – recent and future climate simulations. Glob Nest J 16:43–51

    Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49. https://doi.org/10.1007/BF00866252

    Article  Google Scholar 

  • Moustris K, Paliatsos AG, Bloutsos A, Nikolaidis K, Koronaki I, Kavadias K (2008) Use of neural networks for the creation of hourly global and diffuse solar irradiance data at representative locations in Greece. Renew Energy 33(5):928–932

    Article  Google Scholar 

  • Moustris KP, Ziomas IC, Paliatsos AG (2009) 24hours in advance forecasting of thermal comfort-discomfort levels during the hot period of the year at representative locations of Athens city, Greece. Fresenius Environ Bull 18(5):601–608

    CAS  Google Scholar 

  • Moustris KP, Ziomas IC, Paliatsos AG (2010) 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece. Water Air Soil Pollut 209:29–43. https://doi.org/10.1007/s11270-009-0179-5

    Article  CAS  Google Scholar 

  • Moustris KP, Larissi IK, Nastos PT, Paliatsos AG (2011) Precipitation forecast using artificial neural networks in specific regions of Greece. Water Resour Manag 25(8):1979–1993

    Article  Google Scholar 

  • Moustris KP, Douros K, Nastos PΤ, Larissi IK, Paliatsos AG, Priftis KN (2012) Seven days ahead forecasting of childhood asthma admissions using artificial neural networks in Athens, Greece. Int J Environ Health Res 22(8):93–104

    Article  Google Scholar 

  • Moustris KP, Nastos PT, Paliatsos AG (2013) One-day prediction of biometeorological conditions in a Mediterranean urban environment using artificial neural networks modeling. Adv Meteorol 538508:1–15. https://doi.org/10.1155/2013/538508

    Article  Google Scholar 

  • Moustris KP, Kavadias KA, Zafirakis D, Kaldellis JK (2019) Medium, short and very short-term prognosis of load demand for the Greek Island of Tilos using artificial neural networks and human thermal comfort-discomfort biometeorological data. Renew Energy 147:100–109

    Article  Google Scholar 

  • Nastos PT, Matzarakis A (2006) Weather impacts on respiratory infections in Athens, Greece. Int J Biometeorol 50:358–369. https://doi.org/10.1007/s00484-006-0031-1

    Article  Google Scholar 

  • Nastos PT, Matzarakis A (2012) The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor Appl Climatol 108:591–599. https://doi.org/10.1007/s00704-011-0555-0

    Article  Google Scholar 

  • Nastos PT, Matzarakis A (2019) Present and future climate-tourism conditions in Milos Island, Greece. Atmosphere (Basel) 10(3):145. https://doi.org/10.3390/atmos10030145

    Article  Google Scholar 

  • Nastos PT, Polychroni ID (2016) Modeling and in situ measurements of biometeorological conditions in microenvironments within the Athens University Campus, Greece. Int J Biometeorol 60(10):1463–1479. https://doi.org/10.1007/s00484-016-1137-8

    Article  Google Scholar 

  • Nastos P, Moustris K, Larissi I, Paliatsos A (2011) Air quality and bioclimatic conditions within the greater Athens area, Greece - development and applications of artificial neural networks. In: Advanced Air Pollution, (InTech), p 557–584

  • Nastos PT, Moustris KP, Larissi IK, Paliatsos AG (2013) Rain intensity forecast using artificial neural networks in Athens, Greece. Atmos Res 119:153–160

    Article  Google Scholar 

  • Nastos PT, Paliatsos AG, Koukouletsos KV, Larissi IK, Moustris KP (2014) Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece. Atmos Res 144:141–150

    Article  Google Scholar 

  • Nepal SK, Chipeniuk R (2005) Mountain tourism: toward a conceptual framework. Tour Geogr 7:313–333. https://doi.org/10.1080/14616680500164849

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2006) Thermal comfort in outdoor urban spaces: analysis across different European countries. Build Environ 41:1455–1470. https://doi.org/10.1016/j.buildenv.2005.05.031

    Article  Google Scholar 

  • Papazoglou E, Moustris KP, Nikas K-SP, Nastos PT, Statharas JC (2019) Assessment of human thermal comfort perception in a non-airconditioned school building in Athens, Greece. Energy Procedia 157:1343–1352

    Article  Google Scholar 

  • Price MF, Neville GR (2003) Designing strategies to increase the resilience of alpine montane systems to climate change. In: Hansen LJ, Biringer JL, Hoffman JR (eds) Buying time: a user’s manual for building resistance and resilience to climate change in natural systems. WWF, Gland, pp 73–94

    Google Scholar 

  • Rudel E, Zygmuntowski M, Matzarakis A, Koch E (2005) Thermal bioclimate conditions in the alpine regions of Austria. Croatian Meteorol J 40:194–197

    Google Scholar 

  • Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Clim Res 27:105–117. https://doi.org/10.3354/cr027105

    Article  Google Scholar 

  • Scott D, McBoyle G, Minogue A, Mills B (2006) Climate change and the sustainability of ski-based tourism in eastern North America: a reassessment. J Sustain Tour 14:376–398. https://doi.org/10.2167/jost550.0

    Article  Google Scholar 

  • Tianhu Z, Yuanjun L, Yandi R, Xiaopeng L, Qingxin Z (2020) Optimal design of building environment with hybrid genetic algorithm, artificial neural network, multivariate regression analysis and fuzzy logic controller. Build Environ 175:106810. https://doi.org/10.1016/j.buildenv.2020.106810

  • Unger J (1999) Comparisons of urban and rural bioclimatological conditions in the case of a Central-European city. Int J Biometeorol 43:139–144. https://doi.org/10.1007/s004840050129

    Article  CAS  Google Scholar 

  • Warey A, Kaushik S, Khalighi B, Cruse M, Venkatesan G (2020) Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results. Int J Heat Mass Transf 148(2020):119083. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119083

    Article  Google Scholar 

  • Yilmaz S, Toy S, Irmak MA, Yilmaz H (2007a) Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Build Environ 42:1604–1612. https://doi.org/10.1016/j.buildenv.2006.01.017

    Article  Google Scholar 

  • Yilmaz S, Toy S, Yilmaz H (2007b) Human thermal comfort over three different land surfaces during summer in the city of Erzurum, Turkey. Atmosfera 20:289–297

    Google Scholar 

  • Yilmaz S, Akif Irmak M, Matzarakis A (2013) The importance of thermal comfort in different elevation for city planning. Glob Nest J 15:408–420. https://doi.org/10.30955/gnj.001053

    Article  Google Scholar 

  • Zaninović K, Matzarakis A, Cegnar T (2006) Thermal comfort trends and variability in the Croatian and Slovenian mountains. Meteorol Z 15:243–251. https://doi.org/10.1127/0941-2948/2006/0119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis T. Nastos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

  1. 1.

    Specifications of the sensors and data loggers, used in the ten sites over Ainos Mt., Kefalonia, Greece:

    • Air temperature sensor accuracy: ± 0.25 °C from − 40 to 0 °C, ± 0.2 °C from 0 to 70 °C; relative humidity sensor accuracy: ± 2.5% from 10 to 90% and ± 2.5 to ± 4.0% from 90 to 100%).

    • Data logger: Hobo Pro v2 U23-001, Onset Computer Corporation, USA

  1. 2.

    Specifications of the sensors and data loggers, used in the reference station at Eudoxos National Astronomy Center (38° 10′ 05.1″ Ν, 20° 36′ 59.6″ Ε), located near the Ainos National Park:

    • Air temperature and relative humidity sensors: Rotronic, T & D Thorne & Derick International sensor (accuracy ± 0.8% for relative humidity and ± 0.1 K at 10–30 °C for air temperature).

    • Wind speed sensor: Adolf Thies GmbH and Co K.G. anemometer wind transmitter (resolution 0.05 m wind run).

    • Data logger: CR200, Campbell Scientific Inc.

    • Global solar radiation sensor: Pyranometer: PYRA 08 AV, Delta Ohm, typical sensitivity 10mv, spectral field from 305 to 2800 nm

    • Data logger: Stylitis-10, Symmetron Electronic Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniatis, S., Nastos, P.T., Moustris, K. et al. Human thermal sensation over a mountainous area, revealed by the application of ANNs: the case of Ainos Mt., Kefalonia Island, Greece. Int J Biometeorol 64, 2033–2045 (2020). https://doi.org/10.1007/s00484-020-01993-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01993-y

Keywords

Navigation