Skip to main content
Log in

Synthesis of halide perovskite microwires via methylammonium cations reaction

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Low-dimensional halide perovskites (HPs) have received considerable attention in recent years due to their novel physical properties such as compositional flexibility, high quantum yield, quantum size effects and superior charge transport. Here we show room temperature solution synthesis of 1D organic-inorganic lead bromide perovskite microwires (MWs). Our method uses acetone as a reactant, and when CH3NH3PbBr3 is immersed, acetone reacts with CH3NH3+ cations in the CH3NH3PbBr3 single crystal by the dehydration condensation. The reaction generates a large (CH3)2C = NHCH3+ A-site which cannot be accommodated by the cuboctahedron formed by the corner-sharing [PbBr6]4− octahedral, leading to the transition of corner-sharing octahedra to face-sharing triangular prism and the crystal structure transformation from 3D to 1D. The formation process of (CH3)2C = NHCH3PbBr3 MWs does not involve any ligands, templates or catalysts. A two-terminal memory device was constructed using the (CH3)2C = NHCH3PbBr3 MWs, showing great potential of the method in fabrication of electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

    CAS  Google Scholar 

  2. Bi C, Wang Q, Shao Y, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Communications, 2015, 6(1): 7747

    CAS  Google Scholar 

  3. Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13 (7): 460–466

    CAS  Google Scholar 

  4. Tang Z K, Xu Z F, Zhang D Y, et al. Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Scientific Reports, 2017, 7(1): 7843

    Google Scholar 

  5. Green M A, Jiang Y, Soufiani A M, et al. Optical properties of photovoltaic organic-inorganic lead halide perovskites. The Journal of Physical Chemistry Letters, 2015, 6(23): 4774–4785

    CAS  Google Scholar 

  6. Xing G, Mathews N, Sun S, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347

    CAS  Google Scholar 

  7. Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 εm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970

    CAS  Google Scholar 

  8. Chen Y, Yi H T, Wu X, et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nature Communications, 2016, 7(1): 12253

    CAS  Google Scholar 

  9. Kiermasch D, Rieder P, Tvingstedt K, et al. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6(1): 39333

    CAS  Google Scholar 

  10. Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28 (32): 6804–6834

    CAS  Google Scholar 

  11. Dong R, Fang Y, Chae J, et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Advanced Materials, 2015, 27(11): 1912–1918

    CAS  Google Scholar 

  12. Gu C, Lee J S. Flexible hybrid organic-inorganic perovskite memory. ACS Nano, 2016, 10(5): 5413–5418

    CAS  Google Scholar 

  13. Lin K, Xing J, Quan L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562(7726): 245–248

    CAS  Google Scholar 

  14. Yuan Z, Miao Y, Hu Z, et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nature Communications, 2019, 10(1): 2818

    Google Scholar 

  15. Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 2015, 14(6): 636–642

    CAS  Google Scholar 

  16. Fu A, Yang P. Lower threshold for nanowire lasers. Nature Materials, 2015, 14(6): 557–558

    CAS  Google Scholar 

  17. Calado P, Telford A M, Bryant D, et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nature Communications, 2016, 7(1): 13831

    CAS  Google Scholar 

  18. Kang D H, Park N G. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31(34): 1805214

    Google Scholar 

  19. Niu G, Li W, Meng F, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(3): 705–710

    CAS  Google Scholar 

  20. Kim Y H, Wof C, Kim Y T, et al. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size. ACS Nano, 2017, 11(7): 6586–6593

    CAS  Google Scholar 

  21. Sichert J A, Tong Y, Mutz N, et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Letters, 2015, 15(10): 6521–6527

    CAS  Google Scholar 

  22. Zhang F, Zhong H, Chen C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9 (4): 4533–4542

    CAS  Google Scholar 

  23. Zheng K, Zhu Q, Abdellah M, et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. The Journal of Physical Chemistry Letters, 2015, 6(15): 2969–2975

    CAS  Google Scholar 

  24. Liao Q, Hu K, Zhang H, et al. Perovskite microdisk microlasers self-assembled from solution. Advanced Materials, 2015, 27(22): 3405–3410

    CAS  Google Scholar 

  25. Deng W, Zhang X, Huang L, et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Advanced Materials, 2016, 28 (11): 2201–2208

    CAS  Google Scholar 

  26. Liu P, He X, Ren J, et al. Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano, 2017, 11(6): 5766–5773

    CAS  Google Scholar 

  27. Zhuo S, Zhang J, Shi Y, et al. Self-template-directed synthesis of porous perovskite nanowires at room temperature for highperformance visible-light photodetectors. Angewandte Chemie International Edition, 2015, 54(19): 5693–5696

    CAS  Google Scholar 

  28. Gao L, Zeng K, Guo J, et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Letters, 2016, 16(12): 7446–7454

    CAS  Google Scholar 

  29. Liu J, Chen K, Khan S A, et al. Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31(15): 152002

    CAS  Google Scholar 

  30. Zhang J, Yang X, Deng H, et al. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Letters, 2017, 9(3): 36

    Google Scholar 

  31. Zhou Z, Pang S, Ji F, et al. The fabrication of formamidinium lead iodide perovskite thin films via organic cation exchange. Chemical Communications, 2016, 52(19): 3828–3831

    CAS  Google Scholar 

  32. Xie L Q, Zhang T Y, Chen L, et al. Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18(27): 18112–18118

    CAS  Google Scholar 

  33. Hills-Kimball K, Nagaoka Y, Cao C, et al. Synthesis of formamidinium lead halide perovskite nanocrystals through solid-liquid-solid cation exchange. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(23): 5680–5684

    CAS  Google Scholar 

  34. Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 4th ed. John Wiley & Sons, 2004

  35. Tang L, Mei H, Wang B, et al. Study on structure, thermal stabilization and light absorption of lead-bromide perovskite light harvesters. Journal of Materials Science: Materials in Electronics, 2015, 26(11): 8726–8731

    CAS  Google Scholar 

  36. Liu Y, Yang Z, Cui D, et al. Two-inch-sized perovskite CH3NH3-PbX3 (X = Cl, Br, I) crystals: growth and characterization. Advanced Materials, 2015, 27(35): 5176–5183

    CAS  Google Scholar 

  37. Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain. Nano Letters, 2007, 7 (4): 1003–1009

    CAS  Google Scholar 

  38. Ielmini D, Cagli C, Nardi F, et al. Nanowire-based resistive switching memories: devices, operation and scaling. Journal of Physics D: Applied Physics, 2013, 46(7): 074006

    Google Scholar 

  39. Hong Z, Zhao J, Huang K, et al. Controllable switching properties in an individual CH3NH3PbI3 micro/nanowire-based transistor for gate voltage and illumination dual-driving non-volatile memory. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(14): 4259–4266

    CAS  Google Scholar 

  40. Chua L. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, 29(10): 104001

    Google Scholar 

  41. Prodromakis T, Toumazou C, Chua L. Two centuries of memristors. Nature Materials, 2012, 11(6): 478–481

    CAS  Google Scholar 

  42. Jiang T, Shao Z, Fang H, et al. High-performance nanofloating gate memory based on lead halide perovskite nanocrystals. ACS Applied Materials & Interfaces, 2019, 11(27): 24367–24376

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB0406704), the National Natural Science Foundation of China (Grant No. 61964011), the Natural Science Foundation of Jiangxi Province (Grant Nos. 20165BCB18004 and 20171BCB23005), and the Nanchang University Graduate Innovation Special Funding (Grant No. CX2019054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Gong, J., Guo, S. et al. Synthesis of halide perovskite microwires via methylammonium cations reaction. Front. Mater. Sci. 14, 332–340 (2020). https://doi.org/10.1007/s11706-020-0515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0515-7

Keywords

Navigation