Skip to main content
Log in

Petrographical and geochemical constraints on carbonate diagenesis in an epeiric platform deposit: Late Cretaceous Bagh Group in central India

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

A combined facies, petrography and isotope geochemistry reveal an extensive pedogenic alteration of platform carbonate deposits of the Upper Cretaceous Bagh Group in the western Narmada basin in central India. The highly fossiliferous carbonate sequence of the Bagh Group consists of two formations, the Nodular Limestone at the base, and the Bryozoan Limestone Formation at top. The Nodular Limestone Formation comprises primarily of mudstone and wackestone, with relics of bioclasts such as gastropods, echinoderms, molluscs, forams and calcispheres, reflecting a low-energy supratidal to upper intertidal environment of deposition. Prolonged pedogenesis leads to pervasive micritization, brecciation, desiccation and recrystallization. The overlying Bryozoan Limestone, dominated by packstone and planar laminated rudstone with bryozoans, gastropods, echinoderms/echinoid spines, and molluscs, indicates deposition within the lower intertidal environment with moderately high-energy conditions. Abundant meniscus cement and biomolds suggest meteoric vadose diagenetic modification, whereas, intense secondary micritization of sediments indicates prolonged calichification. The δ13C and δ18O ratios of both Nodular Limestone and Bryozoan Limestone formations are depleted than the normal marine values, indicating an extensive diagenetic resetting of the carbonates. While the meteoric cement is depleted in both δ13C and δ18O ratio, the burial cement shows a decrease of δ18O at constant δ13C. The pedogenetic horizons within the Bagh carbonates bear subtle evidence of subaerial exposures within the overall transgressive Bagh Group. A glauconite bed at the upper part of the Bryozoan Limestone Formation marks the top part of the transgressive deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

adapted from Hudson (1977). The straight line indicates burial diagenetic trend (adapted from Choquette and James, 1987)

Fig. 11

adapted from Hudson (1977). The straight line indicates burial diagenetic trend (adapted from Choquette and James, 1987)

Similar content being viewed by others

Abbreviations

VPDB:

Vienna-Pee Dee Belemnite

References

  • Adabi MH, Zohdi A, Ghabeishavi A, Amiri-Bakhtiyar H (2008) Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: an example from the Eocene deposits in Zagros Basin, SW Iran. Facies 54:499–512

    Google Scholar 

  • Ahmad AHM, Akhtar K (1990) Clastic environments and facies of the Lower Cretaceous Narmada Basin, India. Cretac Res 11:175–190

    Google Scholar 

  • Akhtar K, Khan DA (1997) A Tidal Island model for carbonate sedimentation: Karondia Limestone of Cretaceous Narmada basin, India. J Geol Soc India 50:481–489

    Google Scholar 

  • Alonso-Zarza AM (1999) Initial stages of laminar calcrete formation by roots: examples from the Neogene of central Spain. Sediment Geol 126:177–191

    Google Scholar 

  • Alonso-Zarza AM, Sanz ME, Calvo JP, Estévez P (1998) Calcified root cells in Miocene pedogenic carbonates of the Madrid Basin: evidence for the origin of Microcodium. Sediment Geol 116:81–97

    Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Worden RH (2009) Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the Upper Miocene Kudankulam Formation, Southern India: implications for paleoenvironment and diagenesis. Geochem 69:45–60

    Google Scholar 

  • Banerjee S, Bhattacharya SK, Sarkar S (2006) Carbon and oxygen isotope compositions of the carbonate facies in the Vindhyan Supergroup, central India. J Earth Syst Sci 115:113–134

    Google Scholar 

  • Banerjee S, Bansal U, Thorat AV (2016a) A review on palaeogeographic implications and temporal variation in glaucony composition. J Palaeogeogr 5:43–71

    Google Scholar 

  • Banerjee S, Bansal U, Pande K, Meena SS (2016b) Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: implications for evaluation of stratigraphic condensation. Sediment Geol 331:12–29

    Google Scholar 

  • Banerjee S, Khanolkar S, Saraswati PK (2018) Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch. Geodin Acta 30:119–136

    Google Scholar 

  • Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water–rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137

    Google Scholar 

  • Bansal U, Banerjee S, Ruidas DK, Pande K (2018) Origin and geochemical characterization of the glauconites in the Upper Cretaceous Lameta Formation, central India. J Palaeogeogr 7:99–116

    Google Scholar 

  • Bansal U, Banerjee S, Pande K, Ruidas DK (2019) Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India. Geol Mag. https://doi.org/10.1017/S0016756819000621

    Article  Google Scholar 

  • Bhattacharya B, Jha S (2014) Late Cretaceous diurnal tidal system: a study from Nimar Sandstone, Bagh Group, Narmada Valley, Central India. Curr Sci 107:1032–1037

    Google Scholar 

  • Bhattacharya SK, Jani RA, Tripathi SC, Lahiri TC (1997) Carbon and oxygen isotopic compositions of Infratrappean Limestones from Central and Western India and their depositional environment. J Geol Soc India 50:289–296

    Google Scholar 

  • Blanchet CL, Kasten S, Vidal L, Poulton SW, Ganeshram R, Thouveny N (2012) Influence of diagenesis on the stable isotopic composition of biogenic carbonates from the Gulf of Tehuantepec oxygen minimum zone. Geochem Geophys Geosyst 13:Q04003. https://doi.org/10.1029/2011GC003800

    Article  Google Scholar 

  • Boggs S Jr, Krinsley D (2006) Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, New York, pp 1–165

    Google Scholar 

  • Bose PK, Das NG (1986) A trangressive storm–and fair–weather dominant shelf sequence, Cretaceous Nimar Formation, Chakrud, Madhya Pradesh, India. Sediment Geol 46:147–167

    Google Scholar 

  • Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30:315–318

    Google Scholar 

  • Brand U, Jiang GQ, Azmy K, Bishop J, Montañez IP (2012) Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A.)—1: Brachiopod and whole rock comparison. Chem Geol 308–309:26–39

    Google Scholar 

  • Budd DA, Gaswirth SB, Oliver WL (2002) Quantification of macroscopic subaerial exposure features in carbonate rocks. J Sediment Res 72:917–928

    Google Scholar 

  • Buonocunto FP, Sprovieri M, Bellanca A, D’Argenio B, Ferreri V, Neri R, Ferruzza G (2002) Cyclostratigraphy and high-frequency carbon isotope fluctuations in Upper Cretaceous shallow-water carbonates, Southen Italy. Sedimentology 49:1321–1337

    Google Scholar 

  • Burdett JW, Grotzinger JP, Arthur MA (1990) Did major changes in the stable–isotope composition of Proterozoic seawater occur? Geology 18:227–230

    Google Scholar 

  • Calvet F, Julia R (1983) Pisoids in the caliche profiles of Tarragona NE Spain. In: Peryt TM (ed) Coated Grains. Springer-Verlag, Berlin, pp 456–473

    Google Scholar 

  • Camoin GF (1993) Turonian and coniacian carbonate platforms from the African Tethyan Margin, Algeria, Tunisia. In: Simo JA, Scott RW and Masse J-P (eds). Cretaceous Carbonate Platforms, American Association of Petroleum Geologists, Memoir 56, pp 155–162

  • Chiplonkar GW (1937) Echinoids from the Bagh Beds. Proc Indian Acad Sci B 6:60–71

    Google Scholar 

  • Chiplonkar GW, Badve RM (1976) Palaeontology ofthe Bagh Beds-Pt. IV. Inoceramidae. J Palaeontol Soc India 18:1–12

    Google Scholar 

  • Coimbra R, Azerêdo AC, Cabral MC, Immenhauser A (2016) Palaeoenvironmental analysis of mid-Cretaceous coastal lagoonal deposits (Lusitanian Basin, W Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 446:308–325

    Google Scholar 

  • Coimbra R, Horikx M, Huck S, Heimhofer U, Immenhauser A, Rocha F, Dinis J, Duarte LV (2017) Statistical evaluation of elemental concentrations in shallow-marine deposits (Cretaceous, Lusitanian Basin). Mar Pet Geol 86:1029–1046

    Google Scholar 

  • Colombie C, Strasser A (2005) Facies, cycles, and controls on the evolution of a keepup carbonate platform (Kimmeridgian, Swiss Jura). Sedimentology 52:1207–1227

    Google Scholar 

  • Derry LA (2010) A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett 294:152–162

    Google Scholar 

  • Dunham RJ (1969a) Early Vadose Silt in Townsend Mound Reef, New Mexico. SEPM Spec Publ 14(139):181

    Google Scholar 

  • Dunham RJ (1969b) Vadose Pisolile in the Capitan Reef Permian, New Mexico and Texas. SEPM Spec Publ 14:182–191

    Google Scholar 

  • Föllmi KB, Godet A (2013) Palaeoceanography of lower cretaceous alpine platform carbonates. Sedimentology 60:131–151

    Google Scholar 

  • Flügel E (2004) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, p 976

    Google Scholar 

  • Fournier F, Montaggioni LF, Borgomano J (2004) Paleoenvironments and high-frequency cyclicity in the Cenozoic south-east Asian shallow-water carbonates: a case study from the Oligo-Miocene buildups of Malampaya (offshore Palawan, Philippines). Mar Pet Geol 21:1–22

    Google Scholar 

  • Gangopadhyay TK, Halder K (1996) Significance of the first record of notiloid from the Upper Cretaceous Bagh group of rocks. Curr Sci 706:462–465

    Google Scholar 

  • Gangopadhyay TK, Bardhan S (2000) Dimorphism and a new record of Barroisiceras De Grossouvre (Ammonoidea) from the Coniacian of Bagh, central India. Can J Earth Sci 37:1377–1387

    Google Scholar 

  • Gilleaudeau GJ, Sahoo SK, Kah LC, Henderson MA, Kaufman AJ (2018) Proterozoic carbonates of the Vindhyan Basin, India: chemostratigraphy and diagenesis. Gondwana Res 57:10–25

    Google Scholar 

  • Goldstein RH (1988) Paleosols of Late Pennsylvanian cyclic strata, New Mexico. Sedimentology 35:777–803

    Google Scholar 

  • Gómez-Gras D, Alonso-Zarza M (2003) Reworked calcretes: their significance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain). Sediment Geol 158:299–319

    Google Scholar 

  • Guha AK (1975) Palaeoecology of the Bagh Group, Madhya Pradesh—an investigation based on Bryozoa. Indian J Earth Sci 22:190–201

    Google Scholar 

  • Heba G, Prichonnet G, El Albani A (2009) Meteoric diagenesis of Upper Cretaceous and Paleocene–Eocene shallow-water carbonates in the Kruja platform (Albania): Geochemical evidence. Geol Carpath 60:165–179

    Google Scholar 

  • Henderson A, Serra F, Feltes NA, Albanesi GL, Kah LC (2018) Paired isotope records of carbonate and organic matter from the Middle Ordovician of Argentina: intrabasinal variation and effects of the marine chemocline. Palaeogeogr Palaeoclimatol Palaeoecol 490:107–130

    Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660

    Google Scholar 

  • Jaitly AK, Ajane R (2013) Comments on Placenticeras mintoi Vredenburg, 1906 from the Bagh Beds Late Cretaceous, Central India with special reference to Turonian Nodular Limestone horizon. J Geol Soc India 81:565–574

    Google Scholar 

  • James NP, Choquette PW (1990) Limestones: the meteoric diagenetic environment. Geosci Can Reprint Ser 4:35–73

    Google Scholar 

  • Jarvis I, Trabucho-Alexandre J, Gröcke DR, Uličný D, Laurin J (2015) Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous). Depos Rec 1:53–90

    Google Scholar 

  • Jha S, Bhattacharya B, Nandwani S (2017) Significance of seismites in the Late Cretaceous transgressive Nimar Sandstone succession, Son-Narmada rift valley, central India. Geol J 52:768–783

    Google Scholar 

  • Jaballah J, Negra MH (2016) Stratigraphical and sedimentary characters of Late Cretaceous formations outcropping in central and southern Tunisia, Tethyan southern margin. J Afr Earth Sci 124:289–310

    Google Scholar 

  • Joachimski MM (1994) Subaerial exposure and deposition of shallowing upward sequences: evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains. Sedimentology 41:805–824

    Google Scholar 

  • Kennedy WJ, Phansalkar VG, Walaszczyk I (2003) Prionocyclus germari (Reuss, 1845), a Late Turonian marker fossil from the Bagh Beds of central India. Cretac Res 24:433–438

    Google Scholar 

  • Kraus MJ, Hasiotis ST (2006) Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from paleogene paleosols, bighorn basin, wyoming, U.S.A. J Sediment Res 76:633–646

    Google Scholar 

  • Kumar S, Pathak DB, Pandey B, Jaitly AK, Gautam JP (2018) The age of the Nodular Limestone Formation (Late Cretaceous), Narmada Basin, central India. J Earth Syst Sci 127:109. https://doi.org/10.1007/S12040-018-1017-1

    Article  Google Scholar 

  • Machel HG (2000) Application of cathodoluminescence to carbonate diagenesis. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in Geosciences. Springer-Verlag, Berlin, pp 271–301

    Google Scholar 

  • Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Barker CE, Kopp OC (eds) Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. SEPM Short Course Notes 25: 9–25

  • Magaritz M, Rahner S, Yechieli Y, Krishnamurthy RV (1991) 13C/12C ratio in organic matter from the Dead Sea area: paleoclimatic interpretation. Naturwissenschaften 78:453–455

    Google Scholar 

  • Major RP (1991) Cathodoluminescence in Post-Miocene carbonates. In: Barker CE, Kopp OC (eds) Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. SEPM Short Course Notes 25: 149–153

  • Martin-Chivelet J, Giménez R (1992) Paleosols in microtidal carbonate sequences. Sierra de Utiel Formation, Upper Cretaceous, SE Spain. Sediment Geol 81:125–145

    Google Scholar 

  • Meyers WJ and Lohmann KC (1985) Isotope geochemistry of regionally extensive calcite cement zones and marine components in Mississippian limestones, New Mexico. In: Schneidermann N and Harris PM (eds) Carbonate Cements, SEPM Special Publications 26: 223–239

  • Moore CH (2001) Carbonate reservoir porosity evolution and diagenesis in a sequence–stratigraphic framework. Amsterdam, Elsevier, Developments in Sedimentology 55, 460 p

  • Pomoni-Papaioannou F, Kostopoulou V (2008) Microfacies and cycle stacking pattern in Liassic peritidal carbonate platform strata, Gavrovo-Tripolitza platform, Peloponnesus, Greece. Facies 54:417–431

    Google Scholar 

  • Pomoni-Papaioannou F, Zampetakis-Lekkas A (2009) Facies associations of the late Cenomanian carbonate platform of Tripolitza subzone Vitina, Central Peloponnesus, Greece: evidence of long-term/terrestrial subaerial exposure. Italian J Geosci 128:123–130

    Google Scholar 

  • Pomoni-Papaioannou F, Karakitsios V (2016) Sedimentary facies analysis of a high-frequency, small-scale, peritidal carbonate sequence in the Lower Jurassic of the Tripolis carbonate unit central western Crete, Greece: Long-lasting emergence and fossil laminar dolocretes horizons. J Palaeogeogr 53:241–257

    Google Scholar 

  • Racey A, Fisher J, Bailey H, Roy SK (2016) The value of fieldwork in making connections between onshore outcrops and offshore models: an example from India. In: Bowman M, Smyth HR, Good TR, Passey SR, Hirst JPP, Jordan CJ (eds) The value of outcrop studies in reducing subsurface uncertainty and risk in hydrocarbon exploration and production. Special Publication of the Geological Society of London 436 https://doi.org/10.1144/SP436.9

  • Rasser MW, Scheibner C, Mutti M (2005) A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain). Facies 51:217–232

    Google Scholar 

  • Saller AH, Moore CH (1989) Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands. Sediment Geol 63:253–272

    Google Scholar 

  • Sanders D (1998) Upper Cretaceous ‘rudist formations’. Geol Paläont Mitt Innsbruck 23:37–59

    Google Scholar 

  • Sarkar S, Chakraborty N, Mandal A, Banerjee S, Bose PK (2014) Siliciclastic-carbonate mixing modes in the river-mouth bar palaeogeography of the Upper Cretaceous Garudamangalam Sandstone (Ariyalur, India). J Palaeogeogr 3:233–256

    Google Scholar 

  • Sattler U, Immenhauser A, Hillgartner H, Esteban M (2005) Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to Lower Aptian, Oman). Sedimentology 52:339–361

    Google Scholar 

  • Scorrer S, Azmy K, Stouge S (2019) Carbon-isotope stratigraphy of the Furongian Berry Head Formation (Port au Port Group) and Tremadocian Watts Bight Formation (St. George Group), western Newfoundland, and the correlative significance. Can J Earth Sci 56:223–234

    Google Scholar 

  • Sellwood BW (1993) Structure and origin of limestones. J Geol Soc London 150:801–809

    Google Scholar 

  • Singh SK, Dayal RM (1979) Trace fossils and environment of deposition of Nimar Sandstone, Bagh Beds. J Geol Soc India 20:234–239

    Google Scholar 

  • Singh SK, Srivastava HK (1981) Lithostratigraphy of Bagh Beds and its correlation with Lameta Beds. J Palaeontol Soc India 26:77–85

    Google Scholar 

  • Singh IB, Shekhar S, Agarwal SC (1983) Palaeoenvironment and stratigraphic position of green sandstone Lameta: Late Cretaceous Jabalpur area. J Geol Soc India 24:412–420

    Google Scholar 

  • Spence GH, Tucker ME (1997) Genesis of limestone megabreccias and their significance in sequence stratigraphic models. Sediment Geol 112:163–193

    Google Scholar 

  • Strasser A (1991) Lagoonal–peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and Events in Stratigraphy, Springer–Verlag, pp 709–721

  • Tandon SK (2000) Spatio–temporal patterns of environmental changes in Late Cretaceous sequences of central India. In: Okada H, Mateer NJ (eds) Cretaceous Environments of Asia, vol 17. Elsevier, Amsterdam, pp 225–241

    Google Scholar 

  • Tripathi SC (1995) Palaeontological and Palaeoenvironmental studies of Bagh Group, M.P. Rec Geol Surv India 128:104–105

    Google Scholar 

  • Tripathi SC (2006) Geology and evolution of the Cretaceous infratrappean basins of Lower Narmada Valley, western India. J Geol Soc India 674:459–468

    Google Scholar 

  • Tripathi SC, Lahiri TC (2000) Marine oscillation event stratification: an example from Late Cretaceous Bagh carbonates sequence of Narmada valley, India. Mem Geol Soc India 46:15–24

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific, Oxford, p 482

    Google Scholar 

  • Vincent B, Rambeau C, Emmanuel L, Loreau J-P (2006) Sedimentology and trace element geochemistry of shallow-marine carbonates: an approach to paleoenvironmental analysis along the Pagny-sur-Meuse Section (Upper Jurassic, France). Facies 52:69–84

    Google Scholar 

  • Wendler I (2013) A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth Sci Rev 126:116–146

    Google Scholar 

  • Wilmsen M, Berensmeier M, Fürsich TT, Majidifard MR, Schlagintweit F (2018) A Late Cretaceous epeiric carbonate platform: the Haftoman Formation of Central Iran. Facies 64:11. https://doi.org/10.1007/s10347-018-0523-6

    Article  Google Scholar 

  • Wilson MEJ, Evans MJ (2002) Sedimentology and diagenesis of tertiary carbonates on the Mangkalihat Peninsula, Borneo: implications for subsurface reservoir quality. Mar Pet Geol 19:873–900

    Google Scholar 

  • Wright VP (1994) Paleosols in shallow marine carbonate sequences. Earth Sci Rev 35:367–395

    Google Scholar 

  • Zampetakis-Lekkas A, Pomoni-Papaioannou F, Alexopoulos A (2007) New stratigraphic and palaeogeographic data from the Mesozoic strata of the Tripolitza platform in Central Crete. Evidence of subaerial exposures during Albian-Early Cenomanian. Hell J Geosci 42:7–18

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to their respective institute and universities for infrastructure facilities. SB is thankful to Ministry of Mines, Government of India for the financial support through grant F. No. 14/77/2015-Met IV. The authors thank Subir Sarkar of Jadavpur University for providing access to cathodoluminescence microscope and Prasanta Sanyal of IISER Kolkata for the stable isotope analysis. We thank Karem Azmy and anonymous reviewers for reviewing the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DKR and TG did the field work. FAP did thin section investigation and provided relevant description. SB and DKR did the interpretations related to stable isotopes and wrote most of the text. SB conceived of the study, and participated in its coordination to prepare the draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Santanu Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruidas, D.K., Pomoni-Papaioannou, F.A., Banerjee, S. et al. Petrographical and geochemical constraints on carbonate diagenesis in an epeiric platform deposit: Late Cretaceous Bagh Group in central India. Carbonates Evaporites 35, 94 (2020). https://doi.org/10.1007/s13146-020-00624-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00624-2

Keywords

Navigation