Skip to main content
Log in

The First Distant X-ray Quasars (\(\boldsymbol{z\sim 4}\)) among the Sources Discovered by the eROSITA Telescope of the SRG Orbital Observatory during a Deep Lockman Hole Survey

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

During a deep extragalactic Lockman Hole sky survey with an area of 18.5 sq. deg, which was conducted when the SRG observatory was flying to the Lagrange point L2, the eROSITA telescope detected \({\sim}7000\) X-ray sources. These objects were then provisionally identified and classified using the publicly accessible data of optical and infrared sky surveys by the SRGz machine learning system developed for this purpose at the Space Research Institute of the Russian Academy of Sciences. As a result, a number of new candidates for distant quasars (\(z\sim 4\)) have been selected. The spectroscopic observations of the first two candidates from this list carried out with the 1.6-m AZT-33IK telescope of the Sayan Solar Observatory have confirmed that these objects are actually distant quasars at redshifts 3.878 and 4.116 and are characterized by a high X-ray luminosity \({\sim}10^{45}\) erg s\({}^{-1}\) (2–10 keV). The results obtained allow one to count on the detection of a large number of distant quasars during a four-year all-sky survey of the SRG observatory begun in December 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://iraf.noao.edu.

REFERENCES

  1. B. Abolfathi, D. Aguado, G. Aguilar, P. Allende, A. Almeida, T. Ananna, et al., Astrophys. J. Suppl. Ser. 235, 42 (2018).

    Article  ADS  Google Scholar 

  2. V. Afanasiev, S. Dodonov, V. Amirkhanyan, and A. Moiseev, Astrophys. Bull. 71, 479 (2016).

    Article  ADS  Google Scholar 

  3. R. Ahumada, C. Allende, A. Almeida, F. Anders, A. Scott, B. Andrews, et al., arXiv:1912.02905.

  4. S. Alam, F. Albareti, C. Prieto, F. Anders, S. Anderson, B. Andrews, et al., Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article  ADS  Google Scholar 

  5. Y. Bai, J. Liu, J. Wicker, S. Wang, J. Guo, et al., Astrophys. J. Suppl. Ser. 235, 16 (2018).

    Article  ADS  Google Scholar 

  6. D. van den Berk, G. Richards, A. Bauer, M. Strauss, D. Schneider, and T. Heckman, Astron. J. 122, 549 (2001).

    Article  ADS  Google Scholar 

  7. A. Brown, A. Vallenari, T. Prusti, J. de Bruijne, C. Babusiax, C. Bailer-Jones, et al., Astron. Astrophys. 616, 1 (2018).

    Google Scholar 

  8. R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, and V. C. Vorob’ev, Astron. Lett. 42, 295 (2016).

    Article  ADS  Google Scholar 

  9. A. Georgakakis, J. Aird, J. Buchner, M. Salvato, M. Menzel, W. Brandt, et al., Mon. Not. R. Astron. Soc. 453, 1946 (2015).

    Article  ADS  Google Scholar 

  10. S. F. Kamus, S. A. Denisenko, N. A. Lipin, V. I. Tergoev, P. G. Papushev, S. A. Druzhinin, Yu. S. Karavaev, and Yu. M. Palachev, J. Opt. Technol. 69, 674 (2002).

    Article  Google Scholar 

  11. G. A. Khorunzhev, R. A. Burenin, S. Yu. Sazonov, A. L. Amvrosov, and M. V. Eselevich, Astron. Lett. 43, 135 (2017).

    Article  ADS  Google Scholar 

  12. G. A. Khorunzhev, R. A. Burenin, S. Yu. Sazonov, I. A. Zaznobin, and M. V. Eselevich (2020, in press).

  13. A. Kolodzig, M. Gilfanov, R. Sunyaev, S. Sazonov, and M. Brusa, Astron. Astrophys. 558, A89 (2013a).

    Article  ADS  Google Scholar 

  14. A. Kolodzig, M. Gilfanov, G. Huetsi, and R. Sunyaev, Astron. Astrophys. 558, A90 (2013b).

    Article  ADS  Google Scholar 

  15. D. Lang, Astron. J. 147, 108 (2014).

    Article  ADS  Google Scholar 

  16. D. Lang, D. Hogg, and D. Schlegel, Astron. J. 151, 36 (2016).

    Article  ADS  Google Scholar 

  17. E. Lusso, A. Comastri, C. Vignali, G. Zamorani, M. Brusa, R. Gilli, K. Iwasawa, M. Salvato, et al., Astron. Astrophys. 512, 34 (2010).

    Article  Google Scholar 

  18. P. Massey, K. Strobel, J. Barnes, and E. Anderson, Astrophys. J. 328, 315 (1988).

    Article  ADS  Google Scholar 

  19. A. Meisner, D. Lang, and D. Schlegel, arXiv:1705.06746.

  20. M. Menzel, A. Merloni, A. Georgakakis, M. Salvato, E. Aubourg, W. Brandt, et al., Mon. Not. R. Astron. Soc. 457, 110 (2016).

    Article  ADS  Google Scholar 

  21. A. Merloni, P. Predehl, W. Becker, H. Bohringer, T. Boller, H. Brunner, et al., arXiv:1209.3114v2 (2014).

  22. A. Meshcheryakov (2020, in preparation).

  23. A. Meshcheryakov, V. Glazkova, S. Gerasimov, and R. Burenin, Astron. Lett. 41, 307 (2015).

    Article  ADS  Google Scholar 

  24. A. Meshcheryakov, V. Glazkova, S. Gerasimov, and I. Mashechkin, Astron. Lett. 44, 735 (2018).

    Article  ADS  Google Scholar 

  25. S. Murray, A. Kenter, W. Forman, C. Jones, P. Green, C. Kochanek, et al., Astrophys. J. 161, 1 (2005).

    Article  Google Scholar 

  26. F. Ochsenbein, P. Bauer, and J. Marcout, Astron. Astrophys. Suppl. Ser. 143, 23 (2000).

    Article  ADS  Google Scholar 

  27. M. Pavlinsky, V. Akimov, V. Levin, I. Lapshov, A. Tkachenko, N. Semena, et al., Proc. SPIE 8147, 5 (2011).

    Google Scholar 

  28. M. Pierre, F. Pacaud, C. Adami, S. Alis, B. Altieri, N. Baran, et al., Astron. Astrophys. 592, 1 (2016).

    Article  Google Scholar 

  29. T. Prusti, J. de Bruijne, A. Brown, A. Vallenari, C. Babusiaux, C. Bailer-Jones, et al., Astron. Astrophys. 595, 1 (2016).

    Google Scholar 

  30. G. Richards, A. Myers, C. Peters, C. Krawczyk, G. Chase, N. Ross, et al., Astrophys. J. Suppl. Ser. 219, 39 (2015).

    Article  ADS  Google Scholar 

  31. S. Rosen, N. Webb, M. Watson, J. Ballet, D. Barret, V. Braito, et al., Astron. Astrophys. 590, A1 (2016).

    Article  Google Scholar 

  32. R. Sunyaev et al. (2020, in press).

  33. E. Wright, P. Eisenhardt, A. Mainzer, M. Ressler, R. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The AZT-33IK observations were carried out using the equipment of the Angara Sharing Center http://ckp-rf.ru/ckp/3056. The operation of the AZT-33IK telescope is supported by the Basic Research Program II.16. The software, in particular, eSASS, developed at the Max-Planck-Institut für extraterrestrische Physik (Germany) was used in processing the SRG/eROSITA data. The Spectrum–RG (SRG) spacecraft was designed by the Lavochkin Research and Production Association (enters into the Roscosmos State Corporation). Spectrum–RG was produced with the participation of Germany within the Federal Space Program of Russia on the order of the Russian Academy of Sciences. The Spectrum–RG spacecraft is operated by the Lavochkin Research and Production Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Khorunzhev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorunzhev, G.A., Meshcheryakov, A.V., Burenin, R.A. et al. The First Distant X-ray Quasars (\(\boldsymbol{z\sim 4}\)) among the Sources Discovered by the eROSITA Telescope of the SRG Orbital Observatory during a Deep Lockman Hole Survey. Astron. Lett. 46, 149–155 (2020). https://doi.org/10.1134/S1063773720030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720030032

Keywords:

Navigation