Skip to main content
Log in

New Aspects of Biodistribution of Perfluorocarbon Emulsions in Rats: Thymus Imaging

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

MRI on fluorine-19 is an effective tool for imaging and monitoring phagocytic cells (macrophages, stem cells, etc.) This method is based on the visualization of perfluorocarbon (PFC) emulsions, which nanoparticles undergo endocytosis by macrophages in an organism. The liver and spleen are main places of emulsion accumulation, but not the only ones. The purpose of our study was to identify organs (besides the liver and spleen) that can accumulate PFC emulsions sufficiently for 19F MRI. We studied the biodistribution of PFC emulsion in rats after two different methods of its introduction into an organism (intravenously and intraperitoneally). It was shown that PFC emulsions are accumulated by the thymus and the nearest lymph nodes in the sufficient amount (around 2% of the total intraperitoneally injected dose) to be visualized. It turned out that PFC emulsion is accumulated more in thymus after intraperitoneal injection in comparison with intravenous injection. This is due to the differences in the capture of emulsion by macrophages when it is initially injected into the bloodstream or the abdomen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

References

  1. G. Wang, Y. Fu, S.M. Shea, S.S. Hegde, D.L. Kraitchman, Magn. Reson. Mater. Phys. 32, 147 (2019). https://doi.org/10.1007/s10334-018-0728-2

    Article  Google Scholar 

  2. A. Tennstaedt, A. Mastropietro, M. Nelles, A. Beyrau, M. Hoehn, PLoS ONE 10(12), e0144262 (2015). https://doi.org/10.1371/journal.pone.0144262

    Article  Google Scholar 

  3. M. Rothe, A. Jahn, K. Weiss, J.H. Hwang, J. Szendroedi, M. Kelm, J. Schrader, M. Roden, U. Flögel, F. Bönner, Magn. Reson. Mater. Phys. 32, 5 (2019). https://doi.org/10.1007/s10334-018-0714-8

    Article  Google Scholar 

  4. T. Güden-Silber, S. Temme, C. Jacoby, U. Flögel, in Preclinical MRI (methods and protocols), ed. by M. García Martín, P. López Larrubia. Part of the Methods in Molecular Biology book series, vol. 1718 (SpringerNature, Humana Press, New York, 2018), pp. 235–257. https://doi.org/10.1007/978-1-4939-7531-0_14

  5. E.C. Unger, T. Porter, W. Culp, R. LaBell, T. Matsunaga, R. Zutshi, Adv. Drug Deliv. Rev. 56(9), 1291–1314 (2004). https://doi.org/10.1016/j.addr.2003.12.006

    Article  Google Scholar 

  6. J.W.M. Bulte, M.M.J. Modo (eds.) Design and Applications of Nanoparticles in Biomedical Imaging (Springer International Publishing, Bern, 2017). https://doi.org/10.1007/978-3-319-42169-8_1

  7. C. Giraudeau, B. Djemaï, M.A. Ghaly, F. Boumezbeur, S. Mériaux, P. Robert, M. Port, C. Robic, D. Le Bihan, F. Lethimonnier, J. Valette, NMR Biomed. 25(4), 654–660 (2012). https://doi.org/10.1002/nbm.1781

    Article  Google Scholar 

  8. S.H. Shin, S.H. Park, S.H. Kang, S.W. Kim, M. Kim, D. Kim, Contrast Media Mol. Imaging (2017). https://doi.org/10.1155/2017/4896310

    Article  Google Scholar 

  9. S. Temme, F. Bonner, J. Schrader, U. Flogel, WIREs Nanomed. Nanobiotechnol. 4, 329–343 (2012). https://doi.org/10.1002/wnan.1163

    Article  Google Scholar 

  10. C. Jacoby, S. Temme, F. Mayenfels, N. Benoit, M.P. Krafft, R. Schubert, J. Schrader, U. Flögel, NMR Biomed. 27(3), 261–271 (2013). https://doi.org/10.1002/nbm.3059

    Article  Google Scholar 

  11. N.V. Anisimov, M.V. Gulyaev, O.S. Pavlova, D.V. Volkov, L.L. Gervits, Y.A. Pirogov, J. Phys. Conf. Ser. 886, 012006 (2017). https://doi.org/10.1088/1742-6596/886/1/012006

    Article  Google Scholar 

  12. N.V. Anisimov, M.V. Gulyaev, O.S. Pavlova, D.V. Fomina, V.N. Glukhova, S.S. Batova, J. Phys. Conf. Ser. 886, 012001 (2017). https://doi.org/10.1088/1742-6596/886/1/012001

    Article  Google Scholar 

  13. C. Chirizzi, D. De Battista, I. Tirotta, P. Metrangolo, G. Comi, F.B. Bombelli, L. Chaabane, Radiology 291(2), 351–357 (2019). https://doi.org/10.1148/radiol.2019181073

    Article  Google Scholar 

  14. E.I. Maevsky, L.L. Gervits, Suppl. Chim. Oggi/Chem. Today 26(3), 34–37 (2008). https://www.researchgate.net/publication/288755758_Perfluorocarbon-based_blood_substitute_-_PERFTORAN_Russian_experience

  15. K.B. Ferenz, A.U. Steinbicke, J. Pharmacol. Exp. Ther. 118, 254664 (2019). https://doi.org/10.1124/jpet.118.254664

    Article  Google Scholar 

  16. H.B. Lee, M.D. Blaufox, J. Nucl. Med. 26(1), 72–76 (1985). https://jnm.snmjournals.org/content/26/1/72.long.

  17. https://imagej.nih.gov/ij/. Accessed on 19 Mar 2020.

  18. C. Pettinari, G.Rafaiani, in Encyclopedia of Spectroscopy and Spectrometry, 3rd edn, ed. by J.C. Lindon, D.W. Koppenaal, G.E. Tranter (Academic Press, London, 2017), pp. 117–124. https://doi.org/10.1016/B978-0-12-803224-4.00142-4

    Article  Google Scholar 

  19. O. Dietrich, J.G. Raya, S.B. Reeder, M.F. Reiser, S.O. Schoenberg, J. Magn. Reson. Imaging 26, 375–385 (2007). https://doi.org/10.1002/jmri.20969

    Article  Google Scholar 

  20. E. Esashi, T. Sekiguchi, H. Ito, S. Koyasu, A. Miyajima, J. Immunol. 171, 2773–2777 (2003). https://doi.org/10.4049/jimmunol.171.6.2773

    Article  Google Scholar 

  21. J.C. Guyden, M. Pezzano, Int. Rev. Cytol. 223, 1–37 (2003). https://doi.org/10.1016/s0074-7696(05)23001-2

    Article  Google Scholar 

  22. F.M. Hung, Y.Y. Chuang, C.S. Lee, Y.L. Chen, J.S. Yang, J.J. Lin, K.W. Lu, H.Y. Huang, C.C. Yu, H.F. Lu, J.G. Chung, Mol. Med. Report 5, 683–687 (2012). https://doi.org/10.3892/mmr.2011.704

    Article  Google Scholar 

  23. W. Savino, M. Dardenne, L.A. Velloso, S.D. Silva-Barbosa, Br. J. Nutr. 98, S11–S16 (2007). https://doi.org/10.1017/S0007114507832880

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed on the equipment of the MSU collective-use center and unique complex of devices “Biospectrotomography” with support of RFBR grants No. 19-29-10015 and 20-52-10004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Pirogov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, O.S., Gulyaev, M.V., Anisimov, N.V. et al. New Aspects of Biodistribution of Perfluorocarbon Emulsions in Rats: Thymus Imaging. Appl Magn Reson 51, 1625–1635 (2020). https://doi.org/10.1007/s00723-020-01242-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01242-w

Navigation