Skip to main content
Log in

Anomalously High Fluorine Mobility in Tysonite-Like LaF3:ScF3 Nanocrystals: NMR Diffusion Data

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nanosized La0.93Sc0.07F3 superionic conductor with tysonite structure was obtained at the gas–solution interface after interaction of aqueous salt solution with gaseous HF. NMR diffusion studies show that homovalent substitution of La3+ by Sc3+ with a smaller ionic radius leads to around four orders of magnitude faster fluorine diffusion as compared with crystalline LaF3 and faster as in all previously studied nanosized LaF3 and heterovalent-doped nanosized La0.95Sr0.05F2.95. The homovalent doping is a new route to improve the conductivity of tysonite-structured nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Gao, A.M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S.H. Bo, Chem. Rev. (2020). https://doi.org/10.1021/acs.chemrev.9b00747

    Article  Google Scholar 

  2. A.F. Aalders, A.F.M. Arts, H.W. De Wijn, Phys. Rev. B 32, 5412 (1985)

    Article  ADS  Google Scholar 

  3. A.F. Privalov, H.M. Vieth, I.V. Murin, J. Phys. Chem. Solids 50, 395 (1989)

    Article  ADS  Google Scholar 

  4. C. Hoff, Y.D. Wiemhöfer, O. Glumov, I.V. Murin, Solid State Ionics 101–103, 445 (1997)

    Article  Google Scholar 

  5. A.F. Privalov, I.V. Murin, H.M. Vieth, Solid State Ionics 101–103, 393 (1997)

    Article  Google Scholar 

  6. F. Fujara, D. Kruk, O. Lips, A.F. Privalov, V. Sinitsyn, H. Stork, Solid State Ionics 179, 2350 (2008)

    Article  Google Scholar 

  7. A.F. Privalov, A. Ceniani, F. Fujara, H. Gabriel, I.V. Murin, H.M. Vieth, J. Phys. Condens. Matter 9, 9275 (1997)

    Article  ADS  Google Scholar 

  8. V.V. Sinitsyn, O. Lips, A.F. Privalov, F. Fujara, I.V. Murin, J. Phys. Chem. Solids 64, 1201 (2003)

    Article  ADS  Google Scholar 

  9. A.F. Aalders, A.F.M. Arts, H.W. de Wijn, Solid State Ionics 17, 241 (1985)

    Article  Google Scholar 

  10. M.A. Denecke, W. Gunßer, A.F. Privalov, I.V. Murin, Solid State Ionics 52, 327 (1992)

    Article  Google Scholar 

  11. V. Trnovcová, L.S. Garashina, A. Škubla, P.P. Fedorov, R. Čička, E.A. Krivandina, B.P. Sobolev, Solid State Ionics 157, 195 (2003)

    Article  Google Scholar 

  12. N.I. Sorokin, B.P. Sobolev, Crystallogr. Rep. 52, 842 (2007)

    Article  ADS  Google Scholar 

  13. J. Schoonman, Solid State Ionics 135, 5 (2000)

    Article  Google Scholar 

  14. J. Maier, Nat. Mater. 4, 805 (2005)

    Article  ADS  Google Scholar 

  15. D.X. Wu, X.J. Wu, Y.F. Lu, H. Wang, Trans. Nonferrous Met. Soc. China 16, 828 (2006)

    Article  Google Scholar 

  16. P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Osiko, J. Fluorine Chem. 132, 1012 (2011)

    Article  Google Scholar 

  17. V.P. Tolstoy, L.B. Gulina, J. Nano- Electron. Phys. 5, 01003 (2013)

    Google Scholar 

  18. V.P. Tolstoy, L.B. Gulina, Langmuir 30, 8366 (2014)

    Article  Google Scholar 

  19. L.B. Gulina, V.P. Tolstoy, A.A. Lobinsky, Y.V. Petrov, Part. Part. Syst. Charact. 35, 1800186 (2018)

    Article  Google Scholar 

  20. L.B. Gulina, V.E. Gurenko, V.P. Tolstoy, V.Y. Mikhailovskii, A.V. Koroleva, Langmuir 35, 14983 (2019)

    Article  Google Scholar 

  21. L.B. Gulina, M. Schäfer, A.F. Privalov, V.P. Tolstoy, I.V. Murin, J. Chem. Phys. 143, 234702 (2015)

    Article  ADS  Google Scholar 

  22. L.B. Gulina, M. Schikora, A.F. Privalov, M. Weigler, V.P. Tolstoy, I.V. Murin, M. Vogel, Appl. Magn. Reson. 50, 579 (2019)

    Article  Google Scholar 

  23. L.B. Gulina, M. Schäfer, A.F. Privalov, V.P. Tolstoy, I.V. Murin, M. Vogel, J. Fluorine Chem. 188, 185 (2016)

    Article  Google Scholar 

  24. L.B. Gulina, M. Weigler, A.F. Privalov, I.A. Kasatkin, P.B. Groszewicz, I.V. Murin, V.P. Tolstoy, M. Vogel, Solid State Ionics 352, 115354 (2020)

    Article  Google Scholar 

  25. I.V. Murin, S.V. Chernov, Inorg. Mater. 18, 149 (1982)

    Google Scholar 

  26. V. Trnovcová, P.P. Fedorov, I.I. Buchinskaya, V. Šmatko, F. Hanic, Solid State Ionics 119, 181 (1999)

    Article  Google Scholar 

  27. A. Düvel, P. Heitjans, P. Fedorov, G. Scholz, G. Cibin, A.V. Chadwick, D.M. Pickup, S. Ramos, L.W.L. Sayle, E.K.L. Sayle, T.X.T. Sayle, D.C. Sayle, J. Am. Chem. Soc. 139, 5842 (2017)

    Article  Google Scholar 

  28. A. Düvel, Dalton Trans. 48, 859 (2019)

    Article  Google Scholar 

  29. N.I. Sorokin, Russ. J. Electrochem. 42, 744 (2006)

    Article  Google Scholar 

  30. V. Trnovcová, P.P. Fedorov, I. Furár, J. Rare Earths 26, 225 (2008)

    Article  Google Scholar 

  31. L.N. Patro, K. Hariharan, Solid State Ionics 239, 41 (2013)

    Article  Google Scholar 

  32. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  33. L.B. Gulina, V.P. Tolstoy, I.A. Kasatkin, Y.V. Petrov, J. Fluorine Chem. 180, 117 (2015)

    Article  Google Scholar 

  34. I. Chang, F. Fujara, B. Geil, G. Hinze, H. Sillescu, A. Tölle, J. Non-Cryst. Solids 172–174, 674 (1994)

    Article  ADS  Google Scholar 

  35. R. Kimmich, NMR Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997)

    Google Scholar 

  36. B. Kresse, M.V. Höfler, A.F. Privalov, M. Vogel, J. Magn. Reson. 307, 106566 (2019)

    Article  Google Scholar 

  37. A.F. Privalov, O. Lips, Appl. Magn. Reson. 22, 597 (2002)

    Article  Google Scholar 

  38. A.K. Cheetham, B.E.F. Fender, H. Fuess, A.F. Wright, Acta Cryst. Sect. B 32, 94 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was partially supported by a grant of the Russian Science Foundation, research project No 16-13-10223-P. The XRD research was carried out in the X-ray Diffraction Centre of SPbSU. The SEM study was carried out by the Nanotechnology Centre of SPbSU. The NMR experiments were accomplished in the Technical University Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Privalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulina, L.B., Privalov, A.F., Weigler, M. et al. Anomalously High Fluorine Mobility in Tysonite-Like LaF3:ScF3 Nanocrystals: NMR Diffusion Data. Appl Magn Reson 51, 1691–1699 (2020). https://doi.org/10.1007/s00723-020-01247-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01247-5

Navigation