Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 27, 2020

Study of LCNF and CNF from pine and eucalyptus pulps

  • Iara Fontes Demuner EMAIL logo , Jorge Luiz Colodette , Fernando José Borges Gomes EMAIL logo and Rubens Chaves de Oliveira

Abstract

Nanocelluloses produced from wood pulp are widely studied for various economic applications. Most studies of cellulose nanofibrils (CNF) use lignin-free fibres obtained from bleached pulps; however, unbleached fibres with residual lignin may also be used to obtain lignocelluloses nanofibrils (LCNF). Research on lignocellulose nanofibrils is a recent subject in the field; thus, the aim of the present study was to determine the ultrastructure of lignocellulose nanofibrils compared to cellulose nanofibrils produced from the same raw material. Understanding of nanoparticle properties is of great relevance for their various applications; therefore, complete characterisation of the chemical, physical, and morphological structures of LCNF and CNF produced from pine and eucalyptus woods was performed. Unbleached cellulosic fibres are a viable alternative for LCNF production, which has properties comparable to that of traditional CNF production that uses lignin-free fibres. LCNF from pine and eucalyptus were obtained with 4.0 % and 1.8 % residual lignin, respectively. The nanofibrils had high thermal stability because LCNF had a higher maximum degradation temperature. Due to the low interaction of lignin with water, LCNF had a lower water retention value than CNF.

Funding statement: The Brazilian Agencies CAPES, CNPq and FAPERJ supported the study.

Acknowledgments

Financial support provided by the Brazilian Agencies CAPES, CNPq and FAPERJ are gratefully acknowledged.

  1. Conflict of interest: The authors declare no conflicts of interest.

References

Abdul, Rashid E.S., Muhd Julkapli, N., Yehye, W.A. (2018) Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym. Adv. Technol. 29(6):1531–1546.10.1002/pat.4264Search in Google Scholar

Abe, K., Yano, H. (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17:271–277.10.1007/s10570-009-9382-1Search in Google Scholar

Alemdar, A., Sain, M. (2008) Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. ‎Bioresour. Technol. 99:1664–1671.10.1016/j.biortech.2007.04.029Search in Google Scholar PubMed

Andrade, M., Minhoni, M., Sansígolo, C., Zied, D., Campos, C. (2011) Estudo comparativo da constituição nutricional da madeira e casca de espécies e clones de eucalipto visando o cultivo de shiitake em toras. Rev. Árvore 35(2):183–192.10.1590/S0100-67622011000200002Search in Google Scholar

Ashori, A., Babaee, M., Jonoobi, M., Hamzeh, Y. (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr. Polym. 102:369–375.10.1016/j.carbpol.2013.11.067Search in Google Scholar PubMed

Azevedo, M.A. Diferentes processos de branqueamento da celulose e seus efeitos nas propriedades físicas e cristalinidade. Ph.D. Thesis, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2011.Search in Google Scholar

Bartkowiak, M., Zakrzewski, R. (2004) Thermal degradation of lignins isolated from wood. J. Therm. Anal. Calorim. 77(1):296–304.10.1023/B:JTAN.0000033214.95457.feSearch in Google Scholar

Bassa, A.G., Silva, F.G., Sacon, V.M. (2007) Misturas de madeira de Eucalyptus grandis × Eucalyptus urophylla e Pinus taeda para produção de celulose Kraft através do Processo Lo-Solids. Sci. For. 75:19–29.10.11606/D.11.2007.tde-08032007-162226Search in Google Scholar

Bian, H., Chen, L., Dai, H., Zhu, J.Y. (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr. Polym. 167:167–176.10.1016/j.carbpol.2017.03.050Search in Google Scholar PubMed

Bian, H., Gao, Y., Wang, R., Liu, Z., Wu, W., Dai, H. (2018) Contribution of lignin to the surface structure and physical performance of cellulose nanofibrils film. Cellulose 25(2):1309–1318.10.1007/s10570-018-1658-xSearch in Google Scholar

Brodin, F.W., Gregersen, O.W., Syverud, K. (2014) Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material – A review. Nord. Pulp Pap. Res. J. 29:156–166.10.3183/npprj-2014-29-01-p156-166Search in Google Scholar

Burkinshaw, S. Physico-chemical Aspects of Textile Coloration. John Wiley & Sons Inc., Hoboken, 2015.10.1002/9781118725658Search in Google Scholar

Chemin, M., Heux, L., Guérin, D., Crowther-Alwyn, L., Jean, B. (2019) Hybrid Gibbsite Nanoplatelet/Cellulose Nanocrystal Multilayered Coatings for Oxygen Barrier Improvement. Front. Chem. 7:1–10.10.3389/fchem.2019.00507Search in Google Scholar PubMed PubMed Central

Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., Hai, Y. (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 83:1804–1811.10.1016/j.carbpol.2010.10.040Search in Google Scholar

Cheng, Q., Wang, J., Mcneel, J., Jacobson, P. (2010) Water retention value measurements of cellulosic materials using a centrifuge technique. BioResources 5(3):1945–1954.10.15376/biores.5.3.1945-1954Search in Google Scholar

Cheng, Q., Wang, S., Rials, T.G. (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Appl. Sci. Manuf. 40:218–224.10.1016/j.compositesa.2008.11.009Search in Google Scholar

Cherian, B.M., Pothan, L.A., Nguyen-Chung, T., Mennig, G., Kottaisamy, M., Thomas, S. (2008) A Novel Method for the Synthesis of Cellulose Nanofibril Whiskers from Banana Fibers and Characterization. J. Agric. Food Chem. 56(14):5617–5627.10.1021/jf8003674Search in Google Scholar PubMed

Colodette, J.L., Gomide, J.L., Carvalho, D.M. (2015) Composição química de materiais lignocelulósicos. In: Branqueamento de Polpa Celulósica: Da produção da polpa marrom ao produto acabado. Eds. Colodette, J.L., Gomes, F.G. 1st edn., Editora UFV, Viçosa. pp. 31–58.Search in Google Scholar

Colodette, J.L., Martino, D.C. (2013) Oxygen Bleaching. In: Pulp Production and Processing: From Papermaking to High-Tech Products, Ed. Popa, V. 1st edn., Smithers Rapra Technology Ltd, United Kingdom.Search in Google Scholar

Colodette, J.L., Martino, D.C. (2015) Deslignificação com Oxigênio. In: Branqueamento de Polpa Celulósica: Da produção da polpa marrom ao produto acabado. Eds. Colodette, J.L., Gomes, F.G. 1st edn., Editora UFV, Viçosa. pp. 269–312.Search in Google Scholar

Damasio, R. (2015) Caracterização e aplicações de celuloses nanofibrilada (CNF) e nanocristalina (CNC). Master’s Thesis, Federal University of Viçosa, Viçosa, Brazil.Search in Google Scholar

Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., Souza, S.F., Kottaisamy, M. (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour. Technol. 102(2):1988–1997.10.1016/j.biortech.2010.09.030Search in Google Scholar PubMed

Del Rio, J.C., Gutiérrez, A., Romero, J., Martínez, M.J., Martínez, A.T. (2005) Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrolysis 74:104–109.10.1016/j.jaap.2004.10.010Search in Google Scholar

Demuner, I.F., Colodette, J.L., Gomes, F.J., Oliveira, R.C. (2019) Production and Characterization of CNF and LCNF, and Manufacture of LCNF-nanostructured Packaging Papers. Chem. Eng. Trans. 73:43–48.Search in Google Scholar

Diop, C.I.K., Tajvidi, M., Bilodeau, M.A., Bousfield, D.W., Hunt, J.F. (2017) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24:3037–3050.10.1007/s10570-017-1320-zSearch in Google Scholar

Dufresne, A. Nanocellulose: from nature to high performance tailored materials. De Gruyter, Berlin, 2013.10.1515/9783110254600Search in Google Scholar

Eiras, K.M.M., Colodette, J.L., Silva, V.L. (2009) The role of bound chlorine in the brightness reversion of bleached hardwood kraft pulp. Química Nova 32(1):51–55.10.1590/S0100-40422009000100010Search in Google Scholar

Fall, A.B., Burman, A., Wågberg, L. (2014) Cellulosic Nanofibrils from Eucalyptus, Acacia and Pine Fibers. Nord. Pulp Pap. Res. J. 29(1):176–184.10.3183/npprj-2014-29-01-p176-184Search in Google Scholar

Fengel, D., Wegener, G. Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin, 1989.Search in Google Scholar

Ferrer, A., Quintana, E., Filpponen, I., Solala, I., Vidal, T., Rodrıguez, A., Laine, J., Rojas, O.J. (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193.10.1007/s10570-012-9788-zSearch in Google Scholar

Figueroa, M., Moraes, P. (2009) Comportamento da madeira a temperaturas elevadas. Ambient. Constr. 9(4):157–174.10.1590/s1678-86212009000400525Search in Google Scholar

Filson, P.B., Dawson-Andoh, B.E. (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol. 100(7):2259–2264.10.1016/j.biortech.2008.09.062Search in Google Scholar PubMed

Gellerstedt, G., Dahlman, O. (2003) Recent hypotheses for brightness reversion of hardwood pulps. In: Proceedings of the 3rd International Colloquium on Eucalyptus Pulp, Viçosa, Brazil.Search in Google Scholar

Gharehkhani, S., Sadeghinezhad, E., Kazi, S.N., Yarmand, H., Badarudin, A., Safaei, M.R., Zubir, M.N.M. (2015) Basic effects of pulp refining on fiber properties—A review. Carbohydr. Polym. 115:785–803.10.1016/j.carbpol.2014.08.047Search in Google Scholar PubMed

Gomide, J.L., Colodette, J.L., Oliveira, R.D., Silva, C.M. (2005) Caracterização tecnológica, para produção de celulose, da nova geração de clones de Eucalyptus do Brasil. Rev. Árvore 29:129–137.10.1590/S0100-67622005000100014Search in Google Scholar

Guimarães, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli, G.H.D. (2015) Starch/PVA based nanocomposites reinforced with bamboo nanofibrils. Ind. Crop. Prod. 70:72–83.10.1016/j.indcrop.2015.03.014Search in Google Scholar

Haafiz, M.M., Hassan, A., Zakaria, Z., Inuwa, I.M. (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr. Polym. 103:119–125.10.1016/j.carbpol.2013.11.055Search in Google Scholar PubMed

Henriksson, M., Berglund, L.A., Isaksson, P., Lindström, T., Nishino, T. (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585.10.1021/bm800038nSearch in Google Scholar PubMed

Hoeger, I., Gleisner, R., Negrón, J., Rojas, O., Zhu, J. (2013) Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils. For. Sci. 60(3):502–511.10.5849/forsci.13-012Search in Google Scholar

Huang, Y., Wang, L., Chao, Y., Nawaw, D., Akiyama, T., Yokoyama, T., Matsumoto, Y. (2016) Relationships between hemicellulose composition and lignin structure in woods. J. Wood Chem. Technol. 36(1):9–15.10.1080/02773813.2015.1039543Search in Google Scholar

Iglesias, M. (2018) Lignin-containing cellulose nanofibrils (LCNF): processing and characterization. Ph.D. Thesis, Graduate Faculty of Auburn University, Auburn, Alabama.Search in Google Scholar

Ismail, A.F., Hilal, N., Jaafar, J., Wright, C. (2019) Nanofiber Membranes for Medical, Environmental, and Energy Applications. Boca Raton, Florida.10.1201/9781351174046Search in Google Scholar

Iwamoto, S., Kentaro, A., Yano, H. (2008) The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules 9:1022–1026.10.1021/bm701157nSearch in Google Scholar

Jiang, F., Hsieh, Y. (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. 95:32–40.10.1016/j.carbpol.2013.02.022Search in Google Scholar

Jonoobi, M., Harun, J., Tahir, P.M., Shakeri, A., Saifulazry, S., Makinejad, M.D. (2011) Physicochemical characterization of pulp and nanofibers from kenaf stem. Mater. Lett. 65:1098–1100.10.1016/j.matlet.2010.08.054Search in Google Scholar

Josset, S., Orsolini, P., Siqueira, G., Tejado, A., Tingaut, P., Zimmermann, T. (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord. Pulp Pap. Res. J. 29(1):167–175.10.3183/npprj-2014-29-01-p167-175Search in Google Scholar

Karimi, S., Tahir, M., Dufresne, A., Karimi, A., Abdulkhani, A. (2014) A comparative study on characteristics of nanocellulose reinforced thermoplastic starch biofilms prepared with different techniques. Nord. Pulp Pap. Res. J. 29(1):41–45.10.3183/npprj-2014-29-01-p041-045Search in Google Scholar

Kim, J.Y., Park, J., Hwang, H., Kim, J.K., Song, I.K., Choi, J.W. (2015) Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. J. Anal. Appl. Pyrolysis 113:99–106.10.1016/j.jaap.2014.11.011Search in Google Scholar

Klock, U., Andrade, A.S., Bittencourt, E., Mocelin, E.Z., Crepaldi, C. (2004) Propriedades do papel kraft a partir da madeira juvenil de Pinus maximinoi, HE Moore e Pinus taeda L. Floresta 34(1):33–44.10.5380/rf.v34i1.2373Search in Google Scholar

Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 90:735–764.10.1016/j.carbpol.2012.05.026Search in Google Scholar

Lengowski, E.C., Muniz, G.I.B., Nisgoski, S., Magalhães, W.L.E. (2013) Avaliação de métodos de obtenção de celulose com diferentes graus de cristalinidade. Sci. For. 41:185–194.Search in Google Scholar

Li, J., Gellerstedt, G. (1997) The contribution to kappa number from hexenuronic acid groups in pulp xylan. Carbohydr. Res. 302:213–218.10.1016/S0008-6215(97)00125-0Search in Google Scholar

Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J. (2009) Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydr. Polym. 76(1):94–99.10.1016/j.carbpol.2008.09.034Search in Google Scholar

Li, S., Lyons-Hart, J., Banyasz, J., Shafer, K. (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817.10.1016/S0016-2361(01)00064-3Search in Google Scholar

Liao, Y.F. (2003) Mechanism study of cellulose pyrolysis. Ph.D. Thesis, ZheJiang University. HangZhou, China.Search in Google Scholar

Liu, Y., Hu, H. (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym. 9:735–739.10.1007/s12221-008-0115-0Search in Google Scholar

Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., Mu, X. (2014) A novel approach for the preparation of nanocrystalline celluloseby using phosphotungstic acid. Carbohydr. Polym. 110:415–422.10.1016/j.carbpol.2014.04.040Search in Google Scholar PubMed

Loureiro, G., Antunes, J., Gando-Ferreira, L., Evtuguin, D., Carvalho, M. (2009) Comparison of bleaching kinetics in the final hydrogen peroxide stage of DEOPDP and OQ(PO)DO bleaching sequences. O Papel. 70(10):1–9.Search in Google Scholar

Loureiro, P.E., Domingues, E.F., Evtuguin, D.V., Carvalho, M.G.V.S. (2010) ECF bleaching with a final hydrogen peroxide stage: Impact of the chemical composition of Eucalyptus globulus kraft pulps. BioResources 4:2567–2580.10.15376/biores.5.4.2567-2580Search in Google Scholar

Lu, Q., Tang, L., Wang, S., Huang, B., Chen, Y., Chen, X. (2014) An investigation on the characteristics of cellulose nanocrystals from Pennisetum sínese. Biomass Bioenergy 70:267–272.10.1016/j.biombioe.2014.09.012Search in Google Scholar

Lu, Z., Su, Z., Song, S., Zhao, Y., Ma, S., Zhang, M. (2018) Toward high-performance fibrillated cellulose-based air filter via constructing spider-web-like structure with the aid of TBA during freeze-drying process. Cellulose 25:619–629.10.1007/s10570-017-1561-xSearch in Google Scholar

Maia, E.P., Colodette, J.L. (2003) Efeito do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio. Rev. Árvore 27(2):217–232.10.1590/S0100-67622003000200011Search in Google Scholar

Maloney, T.C., Jaine, J.E., Paulapuro, H. (1999) Comments on the measurement of cell wall water. Tappi J. 82(9):125–127.Search in Google Scholar

Mariani, L.M., Considine, J.M., Turner, K.T. (2019) Mechanical characterization of cellulose nanofibril materials made by additive manufacturing. In: Mechanics of Additive and Advanced Manufacturing, vol. 8. Eds. Kramer, S. et al. Springer, Cham, Switzerland. pp. 43–45.10.1007/978-3-319-95083-9_9Search in Google Scholar

Mishra, R.K., Sabu, A., Tiwari, S.K. (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. J. Saudi Chem. Soc. 22(8):949–978.10.1016/j.jscs.2018.02.005Search in Google Scholar

Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941–3994.10.1039/c0cs00108bSearch in Google Scholar PubMed

Müller-Hagedorn, M., Bockhorn, H., Krebs, L., Müller, U. (2003) A comparative kinetic study on the pyrolysis of three different wood species. J. Anal. Appl. Pyrolysis 68(1):231–249.10.1016/S0165-2370(03)00065-2Search in Google Scholar

Nair, S.S., Yan, N. (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137–3150.10.1007/s10570-015-0737-5Search in Google Scholar

Neto, W.P.F., Silvério, H.A., Dantas, N.O., Pasquini, D. (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Ind. Crop. Prod. 42:480–488.10.1016/j.indcrop.2012.06.041Search in Google Scholar

Nieminen, K., Paananen, M., Sixta, H. (2014) Kinetic model for carbohydrate degradation and dissolution during kraft pulping. Ind. Eng. Chem. Res. 53(28):11292–11302.10.1021/ie501359pSearch in Google Scholar

Nishiyama, Y. (2009) Structure and properties of the cellulose microfibrils. J. Wood Sci. 55:241–249.10.1007/s10086-009-1029-1Search in Google Scholar

Oliveira, R.L., Colodette, J.L., Eiras, K.M.M., Ventorim, G. (2006) The effect of wood supply and bleaching process on pulp brightness stability. Rev. Árvore 30(3):439–450.10.1590/S0100-67622006000300014Search in Google Scholar

Panthapulakkal, S., Sain, M. (2012) Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites. Int. J. Polym. Sci. 249:1–6.10.1155/2012/381342Search in Google Scholar

Pedrazzi, C., Colodette, J., Oliveira, R., Muguet, M., Gomide, J. (2010) Avaliação das propriedades físico-mecânicas de polpas produzidas por novas sequências de branqueamento. Cienc. Florest. 20(1):123–135.10.5902/198050981766Search in Google Scholar

Pejic, B.M., Kostic, M.M., Skundric, P.D., Praskalo, J.Z. (2008) The effects ofhemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresour. Technol. 99(15):7152–7159.10.1016/j.biortech.2007.12.073Search in Google Scholar PubMed

Peng, Y., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z., Tshabalala, M.A. (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392.10.1007/s10570-013-0019-zSearch in Google Scholar

Pereira, B.L., Carneiro, A.D., Carvalho, A.M., Trugilho, P.F., Melo, I.C., Oliveira, A.C. (2013) Estudo da degradação térmica da madeira de Eucalyptus através de termogravimetria e calorimetria. Rev. Árvore 37(3):567–576.10.1590/S0100-67622013000300020Search in Google Scholar

Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G. (2018) Nanocellulose: extraction and application. Carbon Resour. Convers. 1:32–43.10.1016/j.crcon.2018.05.004Search in Google Scholar

Poletto, M., Pistor, V., Zattera, A.J. (2013) Structural characteristics and thermal properties of native cellulose. Cellul. Fundam. Asp. 2:45–68.10.5772/50452Search in Google Scholar

Potthast, A. (2006) Chemistry of kraft cooking. In: Handbook of Pulp, Ed. Sixta, H. VCH, Weinheim, Germany. pp. 164–185.Search in Google Scholar

Potulski, D.C., Muniz, G.I.B., Klock, U., Andrade, A.L. (2014) The influence of incorporation of microfibrillated cellulose on mechanical strength properties of paper. Sci. For. 42(103):345–351.Search in Google Scholar

Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cai, Z., Wu, Y. (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym. 97:226–234.10.1016/j.carbpol.2013.04.086Search in Google Scholar

Qu, X., Wirsén, A., Albertsson, A.-C. (2000) Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives. Polymer 41:41–48.10.1016/S0032-3861(99)00704-1Search in Google Scholar

Raad, T.J., Pinheiro, P.C.C., Yoshida, M.I. (2006) Equação geral de mecanismos cinéticos da carbonização do Eucalyptus spp. Cerne 12(2):93–106.Search in Google Scholar

Randriamanantena, T., Lahatra Razafindramisa, F., Ramanantsizehena, G., Bernes, A., Lacabane, C. (2009) Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere. In: Proceedings of the High-Energy Physics International Conference, Madagascar.Search in Google Scholar

Rasouli, R., Barhoum, A., Bechelany, M., Dufresne, A. (2019) Nanofibers for biomedical and healthcare applications. Macromol. Biosci. 19(2):1800256.10.1002/mabi.201800256Search in Google Scholar PubMed

Ribeiro, R.A., Colodette, J.L., Vaz Júnior, S. (2018) Effect of residual effective alkali on eucalyptus kraft pulp yield and chemistry. Cerne 24(4):408–419.10.1590/01047760201824042593Search in Google Scholar

Rojo, E., Peresin, M.S., Sampson, W.W., Hoeger, I.C., Vartiainen, J., Laine, J., Rojas, O.J. (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem. 17:1853–1866.10.1039/C4GC02398FSearch in Google Scholar

Romanzini, D., Ornaghi Jr, H.L., Amico, S.C., Zattera, A.J. (2012) Preparation and Characterization of Ramie-Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Mater. Res. 15:415–420.10.1590/S1516-14392012005000050Search in Google Scholar

Rosa, I.M., Kenny, J.M., Maniruzzaman, M., Moniruzzaman, M., Monti, M., Puglia, D., Santulli, C., Sarasini, F. (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos. Sci. Technol. 71:246–254.10.1016/j.compscitech.2010.11.023Search in Google Scholar

Rosenau, T., Potthast, A., Hell, J. Cellulose science and Technology Chemistry, Analysis, and Applications. Hoboken, New Jersey, 2018.10.1002/9781119217619Search in Google Scholar

Sanchez, R., Robles, J., Victor, E. (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int. J. Biol. Macromol. 92:1025–1033.10.1016/j.ijbiomac.2016.08.019Search in Google Scholar

Scott, R.W. (1979) Colorimetric determination of hexenuronic acids in plant materials. Anal. Chem. 7:936–941.10.1021/ac50043a036Search in Google Scholar

Sehaqui, H., Zhou, Q., Berglund, L. (2013) Nanofibrillated cellulose for enhancement of strength in highdensity paper structures. Nord. Pulp Pap. Res. J. 28(2):182–189.10.3183/npprj-2013-28-02-p182-189Search in Google Scholar

Sezgi, U., Resende, J., Shackford, L., Colodette, J.L., Andrade, M.F. (2016) Effects of D0-stage temperature, pH and kappa factor on chlorine dioxide decompositon and D0-(EP)-D1 bleaching performance for eucalyptus pulp. Tappi J. 15:285–295.10.32964/TJ15.4.285Search in Google Scholar

Silva, J.C. (2015) Biorefinery of lignocellulosic materials: novel products, methods and applications of forest and agricultural feedstocks. Ph.D. Thesis, Federal University of Viçosa, Viçosa, Brazil.Search in Google Scholar

Sjöström, E., Alén, R. Analytical methods in wood chemistry, pulping, and papermaking. Springer Science & Business Media, United States, 2013.Search in Google Scholar

Soares, V.C. (2011) Comportamento térmico, químico e físico da madeira e do carvão de eucalyptus urophylla x eucalyptus grandis em diferentes idades. Ph.D. Thesis, Federal University of Lavras, Lavras, Brazil.Search in Google Scholar

Solala, I., Volperts, A., Andersone, A., Dizhbite, T., Mironovaulmane, N., Vehniainen, A., Pere, J., Vuorinen, T. (2012) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66(4):477–483.10.1515/hf.2011.183Search in Google Scholar

Spence, K.L., Venditti, R.A., Habibi, Y., Rojas, O.J., Pawlak, J.J. (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresour. Technol. 101(15):5961–5968.10.1016/j.biortech.2010.02.104Search in Google Scholar

Teleman, A., Harjunpää, V., Tenkanen, M., Buchert, J., Hausalo, T., Drakenberg, T., Vuorinen, T. (1995) Characterisation of 4-deoxy-β-L-threo-hex-4-enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and 13C NMR spectroscopy. ‎Carbohydr. Res. 272(1):55–71.10.1016/0008-6215(95)96873-MSearch in Google Scholar

Torres, L.F., Melo, R., Colodette, J.L. (2005) Bleached kraft pulp production from Pinus tecunumanii (Eguiluz e Perry). Rev. Árvore 29(3):489–494.10.1590/S0100-67622005000300017Search in Google Scholar

Turbak, A.F., Snyder, F.W., Sandberg, K.R. (1983) Micrifibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. 37:815–827.Search in Google Scholar

Velásquez-Cock, J., Gañán, P., Posada, P., Castro, C., Serpa, A., Putaux, J.L., Zuluaga, R. (2016) Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: thermal and mechanical properties of the resulting films. Ind. Crop. Prod. 85:1–10.10.1016/j.indcrop.2016.02.036Search in Google Scholar

Viana, L.C. (2013) Desenvolvimento de filmes celulósicos nanoestruturados a partir da madeira de Pinus sp. Ph.D. Thesis, Federal University of Paraná, Curitiba, Brazil.Search in Google Scholar

Walker, J.C.F. Primary Wood Processing: Principles and Practice. Springer, New Zealand, 2006.Search in Google Scholar

Wang, H., de Vries Frits, P., Jin, Y. (2009) A win-win technique of stabilizing sand dune and purifying paper mill black-liquor. J. Environ. Sci. 21(4):488–493.10.1016/S1001-0742(08)62296-2Search in Google Scholar

Wang, H., Li, D., Zhang, R. (2013) Preparation of Ultralong Cellulose Nanofibers and Optically Transparent Nanopapers Derived from Waste Corrugated Paper Pulp. BioResources 8(1):1374–1384.10.15376/biores.8.1.1374-1384Search in Google Scholar

Wang, S., Cheng, Q. (2009) A novel method to isolate fibrils from cellulose fibers by high intensity ultrasonication. Part I: Process optimization. J. Appl. Polym. Sci. 113:1270–1275.10.1002/app.30072Search in Google Scholar

Winuprasith, T., Suphantharika, M. (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll. 32:383–394.10.1016/j.foodhyd.2013.01.023Search in Google Scholar

Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788.10.1016/j.fuel.2006.12.013Search in Google Scholar

Yarova, S., Jones, D., Jaouen, F., Cavaliere, S. (2019) Strategies to Hierarchical Porosity in Carbon Nanofiber Webs for Electrochemical Applications. Surfaces 2(1):159–176.10.3390/surfaces2010013Search in Google Scholar

Received: 2019-08-20
Accepted: 2020-08-04
Published Online: 2020-08-27
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/npprj-2019-0075/html
Scroll to top button