Skip to main content

Advertisement

Log in

EEFFL: energy efficient data forwarding for forest fire detection using localization technique in wireless sensor network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Early prediction of a forest fire is one of the critical research challenges of the wireless sensor network (WSN) to save our ecosystem. In WSN based forest fire detection system, sensor nodes are deployed in the remote forest area for transmitting the sensed data to the base station, which is accessible by the forest department. Though sensor nodes in the forest are localized through GPS connection, the high deployment cost for it motivates the authors of this paper to design a novel localization technique applying the Support Vector Machine. Forest fire prediction in an energy efficient way is another concern of this paper. The semi-supervised classification model is proposed to address this problem by dividing the forest area into different zones [High Active (HA), Medium Active (MA), and Low Active (LA)]. It is designed in such a way that it can be able to predict the state of the (HA, MA, LA) fire zone with 90% accuracy when only one parameter is sensed by sensor nodes due to energy constraints. The greedy forwarding technique is used to transmit the packets from the HA zone to the base station continuously, and the MA zone transmits packets periodically, whereas, LA zone avoids transmitting the sensed data to the base station. This technique of data forwarding enhances network lifetime and reduces congestion during data transmission from the forest area to the base station.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

source Indiatoday.in dated 28th May 2018 [4]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. State agency Victoria emergency Australia https://www.emv.vic.gov.au/.

  2. Brazilian-amazon-fires-deforestation-report/ (2019). Retrieved from https://news.mongabay.com/2019/09/brazilian-amazon-fires-scientifically-linked-to-2019-deforestation-report/.

  3. Forest area percentage (2018) retrieved from NitiAyog India, https://www.niti.gov.in/content/forest-cover-percent-total-geographic-area.

  4. Uttarakhand forest fire image India (2018) retrieved from https://www.indiatoday.in.

  5. Forest Survey of India (2011), https://www.fsi.nic.in/cover_2011/chapter2.pdf.

  6. Khetwal, N., & Ishrat, M. (2012). A study of forest-fire surveillance system based on MANET for Uttarakhand hills pragyaan. Journal of Information Technology, 10(2), 36–39.

    Google Scholar 

  7. Lv, C., Wang, J., & Zhang, F. (2020). Forest fire spread model based on the grey system theory. The Journal of Supercomputing, 76, 3602–3614. https://doi.org/10.1007/s11227-018-2560-x.

    Article  Google Scholar 

  8. Kansal, A., Singh, Y., Kumar, N., & Mohindru, V. (2015). Detection of forest fires using machine learning technique: A perspective. In 2015 third international conference on image information processing (ICIIP) (pp. 241–245). IEEE. https://doi.org/10.1109/ICIIP.2015.7414773.

  9. Jilbab, A., & Bourouhou, A. (2017). Hybridized model for early detection and smart monitoring of forest fire. Transactions on Machine Learning and Artificial Intelligence, 5(4), 364–372.

    Google Scholar 

  10. Philomina, S. (2013). Ad-hoc network and microcontroller remote for early warning system in forest fire control. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(6), 2127–2132.

    Google Scholar 

  11. Díaz-Ramírez, A., Tafoya, L. A., Atempa, J. A., & Mejía-Alvarez, P. (2012). Wireless sensor networks and fusion information methods for forest fire detection. Procedia Technology, 3, 69–79.

    Article  Google Scholar 

  12. Cui, Z., Sun, B., Wang, G., Xue, Y., & Chen, J. (2017). A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems. Journal of Parallel and Distributed Computing, 103, 42–52.

    Article  Google Scholar 

  13. Chen, Y., Li, X. JinpengY. D. Xu, Liu, X., Z. (2018). An improved DV-hop localization algorithm for wireless sensor networks, In 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), E-ISSN: 2158–2297, https://doi.org/10.1109/ICIEA.2018.8398006.

  14. Zhu, F., & Wei, J. (2017). Localization algorithm in wireless sensor networks based on improved support vector machine. Journal of Nanoelectronics and Optoelectronics, 12(5), 452–459.

    Article  Google Scholar 

  15. Popovic, A., Castelli, M., & Vanneschi, L. (2015). Predicting burned areas of forest fires: an artificial intelligence approach. Fire ecology, 11(1), 106–118.

    Article  Google Scholar 

  16. Ganesh, U., Anand, M., Arun, S., Dinesh, M., Gunaseelan, P., & Karthik, R. (2013). Forest fire detection using optimized solar powered zigbee wireless sensor networks. International Journal of Scientific & Engineering Research, 4(6), 586–596.

    Google Scholar 

  17. Wu, C. M., Chang, R. S., Lee, P. I., & Yen, J. H. (2013). An innovative scheme for increasing connectivity and life of ZigBee networks. The Journal of Supercomputing, 65(1), 136–153.

    Article  Google Scholar 

  18. Trivedi, K., & Srivastava, A. K. (2014, December). An energy efficient framework for detection and monitoring of forest fire using mobile agent in wireless sensor networks. In Computational Intelligence and Computing Research (ICCIC), 2014 IEEE International Conference on (pp. 1–4). IEEE.

  19. Gaglio, S., Re, G. L., Martorella, G., & Peri, D. (2016, September). A symbolic distributed event detection scheme for Wireless Sensor Networks. In Emerging Technologies and Factory Automation (ETFA), 2016 IEEE 21st International Conference on (pp. 1–4). IEEE.

  20. Pande, V., Elmannai, W., & Elleithy, K. M. (2012). Optimized algorithm for fire detection over WSN using micaz motes. In 25th international conference on computers and their applications in industry and engineering (CAINE-2012), New Orleans, Louisiana, USA.

  21. Zou, P., & Liu, Y. (2015). An efficient data fusion approach for event detection in heterogeneous wireless sensor networks. Applied Mathematics & Information Sciences, 9(1), 517.

    Article  Google Scholar 

  22. Moussa, N., El Alaoui, A. E. B., & Chaudet, C. (2020). A novel approach of WSN routing protocols comparison for forest fire detection. Wireless Networks, 26, 1857–1867. https://doi.org/10.1007/s11276-018-1872-3.

    Article  Google Scholar 

  23. Rostami, A. S., Badkoobe, M., Mohanna, F., Hosseinabadi, A. A. R., & Sangaiah, A. K. (2018). Survey on clustering in heterogeneous and homogeneous wireless sensor networks. The Journal of Supercomputing, 74(1), 277–323.

    Article  Google Scholar 

  24. Zhang, J., & Chen, J. (2019). An adaptive clustering algorithm for dynamic heterogeneous wireless sensor networks. Wireless Networks, 25, 455–470. https://doi.org/10.1007/s11276-017-1648-1.

    Article  Google Scholar 

  25. Farman, H., Javed, H., Jan, B., Ahmad, J., Ali, S., Khalil, F. N., et al. (2017). Analytical network process based optimum cluster head selection in wireless sensor network. PLoS ONE, 12(7), e0180848.

    Article  Google Scholar 

  26. De Rango, F., Palmieri, N., & Ranieri, S. (2015). Spatial correlation based low energy aware clustering (leach) in a wireless sensor networks. Advances in Electrical and Electronic Engineering, 13(4), 350–358.

    Article  Google Scholar 

  27. Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2017). Increasing lifetime and fault tolerance capability in wireless sensor networks by providing a novel management framework. Wireless Personal Communications, 92(2), 603–622.

    Article  Google Scholar 

  28. Anisi, M. H., Abdul-Salaam, G., Idris, M. Y. I., Wahab, A. W. A., & Ahmedy, I. (2017). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks, 23(1), 249–266.

    Article  Google Scholar 

  29. Mann, P. S., & Singh, S. (2017). Energy-efficient hierarchical routing for wireless sensor networks: A swarm intelligence approach. Wireless Personal Communications, 92(2), 785–805.

    Article  Google Scholar 

  30. Jayarajan, P., Kanagachidambaresan, G. R., Sundararajan, T. V. P., Sakthipandi, K., Maheswar, R., & Karthikeyan, A. (2018). An energy-aware buffer management (EABM) routing protocol for WSN. The Journal of Supercomputing, 76, 4543–4555. https://doi.org/10.1007/s11227-018-2582-4.

    Article  Google Scholar 

  31. Diwakaran, S., Perumal, B., & Devi, K. V. (2018). A cluster prediction model-based data collection for energy efficient wireless sensor networks. The Journal of Supercomputing, 75, 3302–3316. https://doi.org/10.1007/s11227-018-2437-z.

    Article  Google Scholar 

  32. Forest fire dataset (2007). Retrieved from https://www3.dsi.uminho.pt/pcortez/forestfires/.

  33. Xu, Y. H., Sun, Q. Y., & Xiao, Y. T. (2018). An environmentally aware scheme of wireless sensor networks for forest fire monitoring and detection. Future Internet, 10(10), 102.

    Article  Google Scholar 

  34. Daely, P. T., & Shin, S. Y. (2016, July). Range based wireless node localization using dragonfly algorithm. In Ubiquitous and Future Networks (ICUFN), 2016 8th International Conference on (pp. 1012–1015). IEEE.

  35. Yingyou, W., Zhi, L., Yinghui, M., & Dazhe, Z. (2015). A two-stage range-free localization method for wireless sensor networks. International Journal of Distributed Sensor Networks, 11(2), 908417.

    Article  Google Scholar 

  36. Alrajeh, N. A., Bashir, M., & Shams, B. (2013). Localization techniques in wireless sensor networks. International Journal of Distributed Sensor Networks, 9(6), 304628.

    Article  Google Scholar 

  37. Zhao, X., Zhang, X., Sun, Z., & Wang, P. (2018). New wireless sensor network localization algorithm for outdoor adventure. IEEE Access, 6, 13191–13199.

    Article  Google Scholar 

  38. Miao, Y., Wu, H., & Zhang, L. (2018). The accurate location estimation of sensor node using received signal strength measurements in large-scale farmland. Journal of Sensors, 2018, 2325863. https://doi.org/10.1155/2018/2325863.

    Article  Google Scholar 

  39. Cassano, E., Florio, F., De Rango, F., & Marano, S. (2009, April). A performance comparison between ROC-RSSI and trilateration localization techniques for WPAN sensor networks in a real outdoor testbed. In 2009 Wireless Telecommunications Symposium (pp. 1–8). IEEE.

  40. Gui, L., Zhang, X., Ding, Q., Shu, F., & Wei, A. (2017). Reference anchor selection and global optimized solution for DV-hop localization in wireless sensor networks. Wireless Personal Communications, 96(4), 5995–6005.

    Article  Google Scholar 

  41. Afzal, S., & Beigy, H. (2014). A localization algorithm for large scale mobile wireless sensor networks: a learning approach. The Journal of Supercomputing, 69(1), 98–120.

    Article  Google Scholar 

  42. Yang, X., Li, M., Qian, Z., & Di, T. (2018). Improvement of GPSR protocol in vehicular Ad Hoc network. IEEE Access, 6, 39515–39524.

    Article  Google Scholar 

  43. Das, A. K., & Chaki, R. (2017, June). Localization based Anti-Void Clustering Approach (LAVCA) for Energy Efficient Routing in Wireless Sensor Network. In IFIP International Conference on Computer Information Systems and Industrial Management (pp. 290–302). Springer, Cham.

  44. Yaakob, N., Khalil, I., Kumarage, H., Atiquzzaman, M., & Tari, Z. (2015). By-passing infected areas in wireless sensor networks using BPR. IEEE Transactions on Computers, 64(6), 1594–1606.

    MathSciNet  MATH  Google Scholar 

  45. Haseeb, K., Bakar, K. A., Abdullah, A. H., & Darwish, T. (2017). Adaptive energy aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 23(6), 1953–1966.

    Article  Google Scholar 

  46. Abo-Zahhad, M., Farrag, M., & Ali, A. (2015, December). Modeling and minimization of energy consumption in wireless sensor networks. In Electronics, Circuits, and Systems (ICECS), 2015 IEEE International Conference on (pp. 697–700). IEEE.

Download references

Acknowledgment

This research is funded in parts by DST-SERB Project ECR/2017/000983 Grants. The authors would like to thank the DST-SERB for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikram, R., Sinha, D., De, D. et al. EEFFL: energy efficient data forwarding for forest fire detection using localization technique in wireless sensor network. Wireless Netw 26, 5177–5205 (2020). https://doi.org/10.1007/s11276-020-02393-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02393-1

Keywords

Navigation