Skip to main content

Advertisement

Log in

Exact outage performance of small-cell network relying device-to-device and non-orthogonal multiple access under perfect and imperfect CSI

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates a non-orthogonal multiple access (NOMA) technique by employing device-to-device (D2D) transmission in small-cell networks. More specifically, the D2D transmission combines the relay selection model from a group of macro base stations (MBS) with the D2D mode in in small-cell network to form a D2D-NOMA system. Such D2D transmission needs assistance from multiple MBS and the small-cell base station (SBS) using decode-and-forward (DF) techniques. In this context, full-duplex (FD) is adopted at intermediate nodes. Furthermore, there are two possible scenarios in practice including perfect channel state information (CSI) and imperfect CSI that need to be studied to examine performance degradation in such considered network. To evaluate system performance, we derive expressions of outage probability for D2D user. Our study results show that the proposed network with more MBSs selection can improve the outage performance compared to the conventional orthogonal multiple access (OMA) scheme. Finally, numerical results confirms the accuracy of the derived expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hossain, E., & Hasan, M. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation & Measurement Magazine, 18(3), 11–21.

    Article  Google Scholar 

  2. Cisco. (2017). White paper: Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021. Technical report, USA.

  3. Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Enable device-to-device communications underlaying cellular networks: Challenges and research aspects. IEEE Communications Magazine, 52(6), 90–96.

    Article  Google Scholar 

  4. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.

    Article  Google Scholar 

  5. Zhao, P., Feng, L., Yu, P., Li, W., & Qiu, X. (2017). A social-aware resource allocation for 5G device-to-device multicast communication. IEEE Access, 5, 15717–15730.

    Article  Google Scholar 

  6. Lin, X., Ratasuk, R., Ghosh, A., & Andrews, J. G. (2014). Modeling, analysis, and optimization of multicast device-to-device transmissions. IEEE Transactions on Wireless Communications, 13, 4346–4359.

    Article  Google Scholar 

  7. Liu, X., et al. (2019). Transceiver design and multihop D2D for UAV IoT coverage in disasters. IEEE Internet of Things Journal, 6(2), 1803–1815.

    Article  Google Scholar 

  8. Ali, K., Nguyen, H. X., Vien, Q., Shah, P., & Chu, Z. (2018). Disaster management using D2D communication with power transfer and clustering techniques. IEEE Access, 6, 14643–14654.

    Article  Google Scholar 

  9. Zhao, N., et al. (2018). Caching D2D connections in small-cell networks. IEEE Transactions on Vehicular Technology, 67(12), 12326–12338.

    Article  Google Scholar 

  10. Do, Dinh-Thuan, & Van Nguyen, M.-S. (2019). Device-to-device transmission modes in NOMA network with and without wireless power transfer. Computer Communications, 139, 67–77.

    Article  Google Scholar 

  11. Do, D.-T., Van Nguyen, M.-S., Hoang, T.-A., & Lee, B.-M. (2019). Exploiting joint base station equipped multiple antenna and full-duplex D2D users in power domain division based multiple access networks. Sensors, 9(11), 2475.

    Article  Google Scholar 

  12. Rawat, P., Haddad, M., & Altman, E. (2015). Towards efficient disaster management: 5G and Device to Device communication. In International conference on information and communication technologies for disaster management (pp. 79–87).

  13. Zeng, S., Wang, C., Qin, C., & Wang, W. (2018). Interference alignment assisted by D2D communication for the downlink of MIMO heterogeneous networks. IEEE Access, 6, 24757–24766.

    Article  Google Scholar 

  14. Naqvi, S. A. R., et al. (2018). Energy-aware radio resource management in D2D-enabled multi-tier HetNets. IEEE Access, 6, 16610–16622.

    Article  Google Scholar 

  15. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of IEEE vehicular technology conference (pp. 1–5).

  16. Benjebbour, A., Li, A., Saito, Y., Kishiyama, Y., Harada, A., & Naka-mura, T. (2013). System-level performance of downlink noma for future lte enhancements. In Globecom workshops (GC Wkshps)-IEEE (pp. 66–70).

  17. Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE Journal on Selected Areas in Communications, 35(10), 2413–2424.

    Article  Google Scholar 

  18. Do, D.-T., & Le, A.-T. (2019). NOMA based cognitive relaying: Transceiver hardware impairments, relay selection policies and outage performance comparison. Computer Communications, 146, 144–154.

    Article  Google Scholar 

  19. Do, Dinh-Thuan, & Le, C.-B. (2018). Application of NOMA in wireless system with wireless power transfer scheme: Outage and ergodic capacity performance analysis. Sensors, 18(10), 3501.

    Article  Google Scholar 

  20. Do, D.-T., Vaezi, M., & Nguyen, T.-L. (2018). Wireless powered cooperative relaying using NOMA with imperfect CSI. In Proceedings of IEEE globecom workshops (GC Wkshps), Abu Dhabi, UAE (pp. 1–6).

  21. Wei, Z., Yuan, J., Ng, D. W. K., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non orthogonal multiple access for 5G wireless communication networks. [Online]. Available: https://arxiv.org/abs/1609.01856 (pp. 1–17).

  22. Yue, X., Liu, Y., Kang, S., & Nallanathan, A. (2017). Performance analysis of NOMA with fixed gain relaying over Nakagami-m fading channels. IEEE Access, 5, 5445–5454.

    Article  Google Scholar 

  23. Wan, D., Wen, M., Ji, F., Liu, Y., & Huang, Y. (2018). Cooperative NOMA systems with partial channel state information over Nakagami-m fading channels. IEEE Transactions on Communications, 66(3), 947–958.

    Article  Google Scholar 

  24. Yang, Z., Ding, Z., Wu, Y., & Fan, P. (2017). Novel relay selection strategies for cooperative NOMA. IEEE Transactions on Vehicular Technology, 66(11), 10114–10123.

    Article  Google Scholar 

  25. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters, 5(5), 416–419.

    Article  Google Scholar 

  26. Lee, S., da Costa, D. B., Vien, Q. T., Duong, T. Q., & de Sousa, R. T. (2017). Outage probability of non-orthogonal multiple access schemes with partial relay selection. IET Communications, 11(6), 846–854.

    Article  Google Scholar 

  27. Liu, Y., Wang, Y., Sun, R., & Miao, Z. (2019). Distributed resource allocation for D2D-assisted small cell networks with heterogeneous spectrum. IEEE Access, 7, 83900–83914.

    Article  Google Scholar 

  28. Zhao, J., Liu, Y., Chai, K. K., Chen, Y., Elkashlan, M., & AlonsoZarate, J. (2016). NOMA-based D2D communications: Towards 5G. In Global communications conference (GLOBECOM) (pp. 1–6).

  29. Zhao, J., Liu, Y., Chai, K. K., Chen, Y., & Elkashlan, M. (2017). Joint subchannel and power allocation for NOMA enhanced D2D communications. IEEE Transactions on Communications, 65(11), 5081–5094.

    Article  Google Scholar 

  30. Yoon, T., Nguyen, T. H., Nguyen, X. T., Yoo, D., Jang, B., & Nguyen, V. D. (2018). Resource allocation for NOMA-based D2D systems coexisting with cellular networks. IEEE Access, 6, 66293–66304.

    Article  Google Scholar 

  31. Diao, X., Zheng, J., Wu, Y., & Cai, Y. (2019). Joint computing resource, power, and channel allocations for D2D-assisted and NOMA-based mobile edge computing. IEEE Access, 7, 9243–9257.

    Article  Google Scholar 

  32. Selim, M. M., Rihan, M., Yang, Y., Huang, L., Quan, Z., & Ma, J. (2019). On the outage probability and power control of D2D underlaying NOMA UAV-assisted networks. IEEE Access, 7, 16525–16536.

    Article  Google Scholar 

  33. Chen, J., Jia, J., Liu, Y., Wang, X., & Aghvami, A. H. (2019). Optimal resource block assignment and power allocation for D2D-enabled NOMA communication. IEEE Access, 7, 90023–90035.

    Article  Google Scholar 

  34. Dai, Y., Sheng, M., Liu, J., Cheng, N., Shen, X., & Yang, Q. (2019). Joint mode selection and resource allocation for D2D-enabled NOMA cellular networks. IEEE Transactions on Vehicular Technology, 68(7), 6721–6733.

    Article  Google Scholar 

  35. Sun, H., Zhai, D., Zhang, Z., Du, J., & Ding, Z. (2019). Channel allocation and power control for device-to-device communications underlaying cellular networks incorporated with non-orthogonal multiple access. IEEE Access, 7, 168593–168605.

    Article  Google Scholar 

  36. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471.

    Google Scholar 

  37. Sultangali, A., Tsiftsis, T. A., Galymzhan, N., & Abdallah, M. (2019). Outage performance of cooperative underlay CR-NOMA with imperfect CSI. IEEE Communications Letters, 23(1), 176–179.

    Article  Google Scholar 

  38. Nguyen, T.-L., & Do, D.-T. (2018). Power allocation schemes for wireless powered NOMA systems with imperfect CSI: System model and performance analysis. International Journal of Communication Systems, 31(15), e3789.

    Article  Google Scholar 

  39. Liu, J., Kato, N., Ma, J., & Kadowaki, N. (2015). Device-to-device communication in LTE-advanced networks: A survey. IEEE Communications Surveys & Tutorials, 17(4), 1923–1940.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of the Theorem 2

From the expression (28), the first term can be calculated as

$$\begin{aligned} {A_1}&= 1 - \Pr \left( {\gamma _{SD1 \leftarrow 2}^I \geqslant \varepsilon _2^{FD},\gamma _{D12,x2}^I \geqslant \varepsilon _2^{FD}} \right) \\&= 1 - \Pr \left( {X \geqslant \frac{{\varepsilon _2^{FD}\alpha \rho {Z_{SI}} + \varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}} \right) \Pr \left( {{Z_0} \geqslant \frac{{\varepsilon _2^{FD}}}{\rho }} \right) \\&= 1 - \exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{h0}}}}} \right) \int _0^\infty \left( {1 - {F_{X}}\left( {\frac{{\varepsilon _2^{FD}\alpha \rho x + \varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}} \right) } \right) \\&\quad {f_{{Z_{SI}}}}\left( x \right) dx \\&= 1 - \exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{h0}}}}} \right) \int _0^\infty \exp \left( { - \frac{{\varepsilon _2^{FD}\alpha \rho x + \varepsilon _2^{FD}}}{{{\zeta _1}\rho {\lambda _{g0}}}}} \right) \\&\quad \frac{1}{{{\lambda _{hD1}}}}\exp \left( { - \frac{x}{{{\lambda _{hD1}}}}} \right) dx \\&= 1 - \frac{{{\zeta _1}{\lambda _{g0}}}}{{\varepsilon _2^{FD}\alpha {\lambda _{hD1}} + {\zeta _1}{\lambda _{g0}}}}\exp \left( { - \frac{{\varepsilon _2^{FD}}}{{{\zeta _1}\rho {\lambda _{g0}}}} - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{h0}}}}} \right) , \end{aligned}$$
(52)

and the second term of probability in (28) is calculated as follows

$$\begin{aligned} {A_2}&= \left( {1 - \Pr \left( {\gamma _{SRk^*,x2}^I \geqslant \varepsilon _2^{FD},\gamma _{Rk^*D2,x2}^I \geqslant \varepsilon _2^{FD}} \right) } \right) \\&= 1 - \Pr \left( {{Y_{k^*}} \geqslant \frac{{\varepsilon _2^{FD}\left( {\alpha \rho {Y_{SI}} + {\text { }}1} \right) }}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}} \right) \Pr \left( {{Z_k} \geqslant \frac{{\varepsilon _2^{FD}}}{\rho }} \right) \\&= 1 - \exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{hk}}}}} \right) \times \int _0^\infty \left( {1 - {F_{{Y_{k^*}}}}\left( {\frac{{\varepsilon _2^{FD}\left( {\alpha \rho x + {\text { }}1} \right) }}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}} \right) } \right) \\&\quad {f_{{Y_{SI}}}}\left( x \right) dx. \end{aligned}$$
(53)

According to [26], the (CDFs) of the random variable \({{\mathbb {X}}_{{k^*}}}\) is given by

$$\begin{aligned} {F_{{{\mathbb {X}}_{{k^ * }}}}}\left( x \right)&= {\left( {1 - \exp \left( { - \frac{x}{{{\lambda _{{{\mathbb {X}}_{{k^ * }}}}}}}} \right) } \right) ^K} \\&= 1 - \sum \limits _{k = 1}^K {\left( {\begin{array}{*{20}{c}} K \\ k \end{array}} \right) } {( - 1)^{k - 1}}\exp \left( { - \frac{x}{{{\lambda _{{{\mathbb {X}}_{{k^ * }}}}}}}} \right) . \end{aligned}$$
(54)

Therefore, expression (53) is rewritten as follows

$$\begin{aligned} {A_2}&= 1 - \exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{hk}}}}} \right) \\&\quad \times \int _0^\infty \sum \limits _{k = 1}^K {\left( \begin{aligned} K \\ k \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k - 1}}\exp {{\left( { - \frac{{\varepsilon _2^{FD}\left( {\alpha \rho x + {\text { }}1} \right) }}{{{\zeta _1}\rho {\lambda _{gk}}}}} \right) }^k}} \frac{1}{{{\lambda _{hr}}}} \\&\quad \exp \left( { - \frac{x}{{{\lambda _{hr}}}}} \right) dx \\&= 1 - \sum \limits _{k = 1}^K {\left( \begin{aligned} K \\ k \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k - 1}}\frac{1}{{{\lambda _{hr}}}}} \exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{hk}}}} - \frac{{k\varepsilon _2^{FD}}}{{{\zeta _1}\rho {\lambda _{gk}}}}} \right) \\&\quad \times \int _0^\infty {\exp \left( { - \frac{{k\varepsilon _2^{FD}\alpha \rho x}}{{{\zeta _1}\rho {\lambda _{gk}}}}} \right) \exp \left( { - \frac{x}{{{\lambda _{hr}}}}} \right) dx} \\&= 1 - \sum \limits _{k = 1}^K {\left( \begin{aligned} K \\ k \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k - 1}}} \frac{{{\zeta _1}{\lambda _{gk}}}}{{k\varepsilon _2^{FD}\alpha {\lambda _{hr}} + {\zeta _1}{\lambda _{gk}}}} \\&\quad \exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{hk}}}} - \frac{{k\varepsilon _2^{FD}}}{{{\zeta _1}\rho {\lambda _{gk}}}}} \right) . \end{aligned}$$
(55)

It is noted that the expressions (52) and (53) can be obtained by the condition of \({\beta _2} > \varepsilon _2^{FD}{\beta _1}\). The proof is completed. \(\square\)

Appendix B:

Proof of the Theorem 3

From (37), we can obtained as

$$\begin{aligned}&OP_{1 - II}^{FD - CSI} = 1 - \Pr \left( {\gamma _{SD1 \leftarrow 2}^{CSI} \geqslant \varepsilon _2^{FD},\gamma _{SD1}^{CSI} \geqslant \varepsilon _1^{FD}} \right) \\&\quad = 1 - \Pr \left( {\frac{{{\beta _2}\rho X}}{{{\beta _1}\rho X + {\beta _1}\rho {{{\tilde{X}}}} + {\beta _2}\rho {{{\tilde{X}}}} + \alpha \rho {Z_{SI}} + {\text { }}1}} \geqslant \varepsilon _2^{FD},} \right. \\&\qquad \left. {\frac{{{\beta _1}\rho X}}{{{\beta _1}\rho {{{\tilde{X}}}} + {\beta _2}\rho {{{\tilde{X}}}} + \alpha \rho {Z_{SI}} + {\text { }}1}} \geqslant \varepsilon _1^{FD}} \right) \\&\quad = 1 - \Pr \left( {X \geqslant \left( {\left( {{\beta _1} + {\beta _2}} \right) \rho {{{\tilde{X}}}} + \alpha \rho {Z_{SI}} + {\text { }}1} \right) } \right. \\&\qquad \times \left. {max\left( {\frac{{\varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }},\frac{{\varepsilon _1^{FD}}}{{{\beta _1}\rho }}} \right) } \right) \\&\quad = 1 - \Pr \left( {X \geqslant {\mu ^{FD}}\left( {\tau \rho {{{\tilde{X}}}} + \alpha \rho {Z_{SI}} + {\text { }}1} \right) } \right) \\&\quad = 1 - \int \limits _0^\infty {\int \limits _0^\infty {\left( {1 - {F_{X}}\left( {{\mu ^{FD}}\left( {\tau \rho x + \alpha \rho y + {\text { }}1} \right) } \right) } \right) } } {f_{{{{\tilde{X}}}}}}\left( x \right) \\&\qquad dx{f_{{Z_{SI}}}}\left( y \right) dy \\&\quad = 1 - \frac{{{\lambda _{g0}}{\lambda _{g0}}}}{{\left( {{\mu ^{FD}}\tau \rho {\lambda _{{\tilde{g}}0}} + {\lambda _{g0}}} \right) \left( {{\mu ^{FD}}\alpha \rho {\lambda _{hD1}} + {\lambda _{g0}}} \right) }} \\&\qquad \exp \left( { - \frac{{{\mu ^{FD}}}}{{{\lambda _{g0}}}}} \right) , \end{aligned}$$
(56)

where \({\mu ^{FD}} = max\left( {\frac{{\varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }},\frac{{\varepsilon _1^{FD}}}{{{\beta _1}\rho }}} \right) ,\tau = {\beta _1} + {\beta _2}\) and it is under assumption that \({\beta _2} > \varepsilon _2^{FD}{\beta _1}\).

The proof is completed. \(\square\)

Appendix C:

Proof of the Theorem 4

Considering the expressions in (40), the first term can be rewritten as

$$\begin{aligned} {B_1}&= 1 - \Pr \left( {\gamma _{SD1 \leftarrow 2}^{CSI} \geqslant \varepsilon _2^{FD},\gamma _{D12,x2}^{CSI} \geqslant \varepsilon _2^{FD}} \right) \\&= 1 - \Pr \left( {\frac{{{\beta _2}\rho X}}{{{\beta _1}\rho X + {\beta _1}\rho {{{\tilde{X}}}} + {\beta _2}\rho {{{\tilde{X}}}} + \alpha \rho {Z_{SI}} + {\text { }}1}} \geqslant \varepsilon _2^{FD}} \right) \\&\qquad \times \Pr \left( {\frac{{\rho {Z_0}}}{{\rho {{\tilde{Z}}_0} + 1}} \geqslant \varepsilon _2^{FD}} \right) \\&= 1 - \underbrace{\Pr \left( {X \geqslant \frac{{\varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}\left( {{\beta _1}\rho {{{\tilde{X}}}} + {\beta _2}\rho {{{\tilde{X}}}} + \alpha \rho {Z_{SI}} + {\text { }}1} \right) } \right) }_{{E_1}} \\&\qquad \times \underbrace{\Pr \left( {{Z_0} \geqslant \frac{{\varepsilon _2^{FD}\rho {{\tilde{Z}}_0} + \varepsilon _2^{FD}}}{\rho }} \right) }_{{E_2}}. \end{aligned}$$
(57)

Furthermore, the expressions \(E_1\) and \(E_2\) can be calculated as, respectively.

$$\begin{aligned} {E_1}&= \Pr \left( {X \geqslant \frac{{\varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}\left( {{\beta _1}\rho {{{\tilde{X}}}} + {\beta _2}\rho {{{\tilde{X}}}} + \alpha \rho {Z_{SI}} + {\text { }}1} \right) } \right) \\&= \int _0^\infty \int _0^\infty \left( {1 - {F_{X}}\left( {\frac{{\varepsilon _2^{FD}}}{{{\zeta _1}\rho }}\left( {\tau \rho x + \alpha \rho y + {\text { }}1} \right) } \right) } \right) {f_{{{{\tilde{X}}}}}}\left( x \right) \\&\quad dx{f_{{Z_{SI}}}}\left( y \right) dy \\&= \frac{{\zeta _1^2\lambda _{g0}^2}}{{\left( {\varepsilon _2^{FD}\tau {\lambda _{{\tilde{g}}0}} + {\zeta _1}{\lambda _{g0}}} \right) \left( {\varepsilon _2^{FD}\alpha {\lambda _{hD1}} + {\zeta _1}{\lambda _{g0}}} \right) }} \\&\quad \exp \left( { - \frac{{\varepsilon _2^{FD}}}{{{\zeta _1}\rho {\lambda _{g0}}}}} \right) , \end{aligned}$$
(58)

and

$$\begin{aligned} {E_2}&= \Pr \left( {{Z_0} \geqslant \frac{{\varepsilon _2^{FD}\rho {{\tilde{Z}}_0} + \varepsilon _2^{FD}}}{\rho }} \right) \\&= \int _0^\infty {\left( {1 - {F_{{Z_0}}}\left( {\frac{{\varepsilon _2^{FD}\rho x + \varepsilon _2^{FD}}}{\rho }} \right) } \right) {f_{{{\tilde{Z}}_0}}}\left( x \right) dx} \\&= \int _0^\infty {\exp \left( { - \frac{{\varepsilon _2^{FD}\rho x + \varepsilon _2^{FD}}}{{\rho {\lambda _{h0}}}}} \right) \frac{1}{{{\lambda _{{\tilde{h}}0}}}}\exp \left( { - \frac{x}{{{\lambda _{{\tilde{h}}0}}}}} \right) dx} \\&= \frac{{{\lambda _{h0}}}}{{\varepsilon _2^{FD}{\lambda _{{\tilde{h}}0}} + {\lambda _{h0}}}}\exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{h0}}}}} \right) . \end{aligned}$$
(59)

Besides, the second term in (40) can be calculated as

$$\begin{aligned} {B_2}&= \left( {1 - \Pr \left( {\gamma _{SRk^*,x2}^{CSI} \geqslant \varepsilon _2^{FD},\gamma _{Rk^*D2,x2}^{CSI} \geqslant \varepsilon _2^{FD}} \right) } \right) \\&= 1 - \underbrace{\Pr \left( {{Y_{k^*}} \geqslant \frac{{\varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}\left( {\left( {{\beta _1} + {\beta _2}} \right) \rho {{\tilde{Y}}_{k^*}} + \alpha \rho {Y_{SI}} + {\text { }}1} \right) } \right) }_{{F_1}} \\&\quad \times \underbrace{\Pr \left( {{Z_k} \geqslant \frac{{\varepsilon _2^{FD}\rho {{\tilde{Z}}_k} + \varepsilon _2^{FD}}}{\rho }} \right) }_{{F_2}}. \end{aligned}$$
(60)

Consequently, the probability expressions in (60), i.e., \(F_1\) and \(F_2\), is determined as, respectively.

$$\begin{aligned} {F_1}&= \Pr \left( {{Y_{k^*}} \geqslant \frac{{\varepsilon _2^{FD}}}{{{\beta _2}\rho - \varepsilon _2^{FD}{\beta _1}\rho }}\left( {\left( {{\beta _1} + {\beta _2}} \right) \rho {{\tilde{Y}}_{k^*}} + \alpha \rho {Y_{SI}} + {\text { }}1} \right) } \right) \\&= \int \limits _0^\infty \int \limits _0^\infty \left( {1 - {F_{{Y_{k^*}}}}\left( {\frac{{\varepsilon _2^{FD}}}{{{\zeta _1}\rho }}\left( {\tau \rho x + \alpha \rho y + {\text { }}1} \right) } \right) } \right) {f_{{\tilde{Y}}_{k^*}}}\left( x \right) \\&\quad dx{f_{{Y_{SI}}}}\left( y \right) dy \\&= \int \limits _0^\infty {\int \limits _0^\infty {\left( {\sum \limits _{k = 1}^K {\left( \begin{aligned} K \\ k \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k - 1}}\exp \left( { - \frac{{\varepsilon _2^{FD}k}}{{{\zeta _1}\rho {\lambda _{gk}}}}\left( {\tau \rho x + \alpha \rho y + {\text { }}1} \right) } \right) } } \right. } } \\&\quad \left. { \times \sum \limits _{k = 1}^K {\left( \begin{aligned} K \\ k \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k - 1}}\frac{k}{{{\lambda _{{\tilde{g}}k}}}}\exp \left( { - \frac{{kx}}{{{\lambda _{{\tilde{g}}k}}}}} \right) } dx\frac{1}{{{\lambda _{hr}}}}\exp \left( { - \frac{y}{{{\lambda _{hr}}}}} \right) dy} \right) \\&= \sum \limits _{k = 1}^K {\sum \limits _{j = 1}^K {\left( \begin{aligned} K \\ k \\ \end{aligned} \right) \left( \begin{aligned} K \\ j \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k + j - 2}}\frac{j}{{{\lambda _{{\tilde{g}}k}}}}\frac{1}{{{\lambda _{hr}}}}} \exp \left( { - \frac{{\varepsilon _2^{FD}k}}{{{\zeta _1}\rho {\lambda _{gk}}}}} \right) } \\&\quad \times \int \limits _0^\infty \exp \left( { - \frac{{\varepsilon _2^{FD}k\tau x}}{{{\zeta _1}{\lambda _{gk}}}}} \right) \exp \left( { - \frac{{jx}}{{{\lambda _{{\tilde{g}}k}}}}} \right) dx\int _0^\infty \\&\quad {\exp \left( { - \frac{{\varepsilon _2^{FD}k\alpha y}}{{{\zeta _1}{\lambda _{gk}}}}} \right) \exp \left( { - \frac{y}{{{\lambda _{hr}}}}} \right) dy} \\&= \sum \limits _{k = 1}^K {\sum \limits _{j = 1}^K {\left( \begin{aligned} K \\ k \\ \end{aligned} \right) \left( \begin{aligned} K \\ j \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k +j-2}}\frac{j}{{{\lambda _{{\tilde{g}}k}}}}\frac{1}{{{\lambda _{hr}}}}} \exp \left( { - \frac{{\varepsilon _2^{FD}k}}{{{\zeta _1}\rho {\lambda _{gk}}}}} \right) } \\&\quad \times \int _0^\infty {\exp \left( { - \left( {\frac{{\varepsilon _2^{FD}k\tau }}{{{\zeta _1}{\lambda _{gk}}}} + \frac{j}{{{\lambda _{{\tilde{g}}k}}}}} \right) x} \right) dx} \\&\quad \int _0^\infty {\exp \left( { - \left( {\frac{{\varepsilon _2^{FD}k\alpha }}{{{\zeta _1}{\lambda _{gk}}}} + \frac{1}{{{\lambda _{hr}}}}} \right) y} \right) dy} \\&= \sum \limits _{k = 1}^K \sum \limits _{j = 1}^K \left( \begin{aligned} K \\ k \\ \end{aligned} \right) \left( \begin{aligned} K \\ j \\ \end{aligned} \right) {{\left( { - 1} \right) }^{k + j - 2}} \\&\quad \frac{{\zeta _1^2\lambda _{gk}^2}}{{\left( {\varepsilon _2^{FD}k\tau {\lambda _{{\tilde{g}}k}} + {\zeta _1}{\lambda _{gk}}} \right) \left( {\varepsilon _2^{FD}k\alpha {\lambda _{hr}} + {\zeta _1}{\lambda _{gk}}} \right) }} \\&\quad \times \exp \left( { - \frac{{\varepsilon _2^{FD}k}}{{{\zeta _1}\rho {\lambda _{gk}}}}} \right) , \end{aligned}$$
(61)

and it is similar to (59), we have that

$$\begin{aligned} {F_2} = \frac{{{\lambda _{hk}}}}{{\varepsilon _2^{FD}{\lambda _{{\tilde{h}}k}} + {\lambda _{hk}}}}\exp \left( { - \frac{{\varepsilon _2^{FD}}}{{\rho {\lambda _{hk}}}}} \right) . \end{aligned}$$
(62)

Note that the condition \({\beta _1} > \varepsilon _1^{FD}{\beta _2}\) has maintained so far. Substituting (58) and (59) into (57) and replacing (60) by (61) and (62), then combining (57) with (60), the proof is completed. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, HP., Nguyen, VMS., Do, DT. et al. Exact outage performance of small-cell network relying device-to-device and non-orthogonal multiple access under perfect and imperfect CSI. Wireless Netw 26, 5133–5149 (2020). https://doi.org/10.1007/s11276-020-02377-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02377-1

Keywords

Navigation