Skip to main content
Log in

Threshold \(\pi ^-\) photoproduction on the neutron

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Recent data from the PIONS@MAX-lab Collaboration, measuring the total cross section of the incoherent pion photoproduction reaction, \(\gamma d\rightarrow \pi ^- pp\), near threshold, have been used to extract the \(E_{0+}\) multipole and total cross section of the reaction \(\gamma n\rightarrow \pi ^-p\), also near threshold. These are the first measurements of the reaction \(\gamma d\rightarrow \pi ^- pp\) in the threshold region. The value of \(E_{0+}\) is extracted through a fit to the deuteron data in a photoproduction model accounting for final-state interactions. The model takes an S-wave approximation for the elementary reaction \(\gamma n\rightarrow \pi ^-p\) with \(\hbox {E}_{0+} = \) const in the threshold region. The fit over all the 6 deuteron data points gives the value \(E_{0+} = -\,31.86\pm 0.8\) (in units \(10^{-3}/m_\pi \)). We explore the dependence of our results on the choice of data subsets included in the fit. The obtained values of \(E_{0+}\), for different subsets, have overlapping errors and agree with previous determinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: see Ref. [14].]

References

  1. D.G. Ireland, E. Pasyuk, I. Strakovsky, Photoproduction reactions and non-strange baryon spectroscopy. Prog. Part. Nucl. Phys. 111, 103752 (2020)

    Article  Google Scholar 

  2. N.M. Kroll, M.A. Ruderman, A Theorem on photomeson production near threshold and the suppression of pairs in pseudoscalar meson theory. Phys. Rev. 93, 233 (1954)

    Article  ADS  Google Scholar 

  3. G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Application of dispersion relations to low-energy meson-nucleon scattering. Phys. Rev. 106, 1337 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.I. Vainshtein, V.I. Zakharov, Low-energy theorems for photoproduction and electropion production at threshold. Nucl. Phys. B 36, 589 (1972)

    Article  ADS  Google Scholar 

  5. F.A. Berends, A. Donnachie, D.L. Weaver, Photoproduction and electroproduction of pions. 1. Dispersion relation theory. Nucl. Phys. B 4, 1 (1967)

    Article  ADS  Google Scholar 

  6. M. Hilt, B.C. Lehnhart, S. Scherer, L. Tiator, Pion photo- and electroproduction in relativistic baryon chiral perturbation theory and the chiral MAID interface. Phys. Rev. C 88, 055207 (2013)

    Article  ADS  Google Scholar 

  7. V. Bernard, N. Kaiser, U.-G. Meißner, Threshold pion photoproduction in chiral perturbation theory. Nucl. Phys. B 383, 442–496 (1992)

    Article  ADS  Google Scholar 

  8. V. Bernard, N. Kaiser, U.-G. Meißner, Chiral corrections to the Kroll–Ruderman theorem. Phys. Lett. B- 383, 116–120 (1996)

    Article  ADS  Google Scholar 

  9. C.M.G. Lattes, H. Muirhead, G.P.S. Occhialini, C.F. Powell, Processes involving charged mesons. Nature 159, 694 (1947)

    Article  ADS  Google Scholar 

  10. E.M. McMillan, J.M. Peterson, R.S. White, Production of mesons by X-rays. Science 110, 579 (1949)

    Article  ADS  Google Scholar 

  11. J. Steinberger, W.K.H. Panofsky, J. Steller, Evidence for the production of neutral mesons by photons. Phys. Rev. 78, 802 (1950)

    Article  ADS  Google Scholar 

  12. R.S. White, M.J. Jacobson, A.G. Schulz, The Production of charged photomesons from deuterium and hydrogen. I. Phys. Rev. 88, 836 (1952)

    Article  ADS  Google Scholar 

  13. H.L. Anderson, E. Fermi, R. Martin, D.E. Nagle, Angular distribution of pions scattered by hydrogen. Phys. Rev. 91(1), 155 (1953)

    Article  ADS  Google Scholar 

  14. W.J. Briscoe, M. Döring, H. Haberzettl, I.I. Strakovsky, R.L. Workman, Institute of Nuclear Studies of The George Washington University Database. http://www.gwdac.phys.gwu.edu/

  15. W.J. Briscoe et al., A2 Collaboration at MAMI, Cross section for \(\gamma n \rightarrow \pi ^0 n\) measured at Mainz/A2. Phys. Rev. C 100(6), 065205 (2019)

  16. D. Drechsel, S.S. Kamalov, L. Tiator, Unitary isobar model—MAID2007. Eur. Phys. J. A 34, 69 (2007)

    Article  ADS  Google Scholar 

  17. B. Strandberg et al., PIONS\(@\)MAX-lab Collaboration, Near-threshold \(\pi ^-\) photoproduction on the deuteron. Phys. Rev. C 101(3), 035207 (2020)

  18. J.-O. Adler et al., The upgraded photon tagging facility at the MAX IV Laboratory. Nucl. Instrum. Methods Phys. Res. Sect. A 715, 1 (2013)

    Article  ADS  Google Scholar 

  19. M. Eriksson, The MAX-lab Story; from microtron to MAX IV. in Proceedings of the 5th International Particle Accelerator Conference (IPAC 2014), Dresden, Germany, June 2014. Joint Accelerator Conferences Website, JACoW, Geneva, Switzerland, 2014, Editors: Ch. Petit-Jean-Genaz et al., pp. 2852–2855

  20. V.E. Tarasov, W.J. Briscoe, H. Gao, A.E. Kudryavtsev, I.I. Strakovsky, Extracting the photoproduction cross section off the neutron \(\gamma n\rightarrow \pi ^-p\) from deuteron data with FSI effects. Phys. Rev. C 84, 035203 (2011)

    Article  ADS  Google Scholar 

  21. L.D. Landau, E.M. Lifshits, Quantum Mechanics: Non-relativistic Theory (Butterworth-Heinemann, Oxford, 1977)

    Google Scholar 

  22. M.I. Levchuk, A.Y. Loginov, A.A. Sidorov, V.N. Stibunov, M. Schumacher, Incoherent pion photoproduction on the deuteron in the first resonance region. Phys. Rev. C 74, 014004 (2006)

    Article  ADS  Google Scholar 

  23. M. Döring, E. Oset, M.J. Vicente Vacas, S wave pion nucleon scattering length from \(\pi N\), pionic hydrogen and deuteron data. Phys. Rev. C 70, 045203 (2004)

    Article  ADS  Google Scholar 

  24. V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D. Phillips, Precision calculation of threshold \(\pi ^-d\) scattering, \(\pi N\) scattering lengths, and the GMO sum rule. Nucl. Phys. A 872, 69–116 (2011)

    Article  ADS  Google Scholar 

  25. R. Machleidt, The high precision, charge dependent Bonn nucleon–nucleon potential (CD-Bonn). Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  26. D. Drechsel, L. Tiator, Threshold pion photoproduction on nucleons. J. Phys. G 18, 449 (1992)

    Article  ADS  Google Scholar 

  27. O. Hanstein, D. Drechsel, L. Tiator, A Dispersion theoretical approach to the threshold amplitudes of pion photoproduction. Phys. Lett. B 399, 13–21 (1997)

    Article  ADS  Google Scholar 

  28. V. Lensky, V. Baru, J. Haidenbauer, C. Hanhart, A.E. Kudryavtsev, U.-G. Meißner, Precision calculation of \(\gamma d\rightarrow \pi ^+nn\) within chiral perturbation theory. Eur. Phys. J. A 26, 107 (2005)

    Article  ADS  Google Scholar 

  29. W. Chen et al., Amplitude analysis of \(\gamma n\rightarrow \pi ^- p\) data above 1 GeV. Phys. Rev. C 86, 015206 (2012)

    Article  ADS  Google Scholar 

  30. W.J. Briscoe, A.E. Kudryavtsev, P. Pedroni, I.I. Strakovsky, V.E. Tarasov, R.L. Workman, Evaluation of the \(\gamma n\rightarrow \pi ^-p\) differential cross sections in the Delta-isobar region. Phys. Rev. C 86, 065207 (2012)

    Article  ADS  Google Scholar 

  31. P.T. Mattione et al., CLAS Collaboration, Differential cross section measurements for \(\gamma n\rightarrow {\pi }^{-}p\) above the first nucleon resonance region. Phys. Rev. C 96(3), 035204 (2017)

  32. D.H. White, R.M. Schectman, B.M. Chasan, Photoproduction of negative mesons in deuterium. Phys. Rev. 120(2), 614 (1960)

    Article  ADS  Google Scholar 

  33. M. Salomon, D.F. Measday, J.M. Poutissou, B.C. Robertson, Radiative capture and charge exchange of negative pions on protons at 27.4-MeV and 39.3-MeV. Nucl. Phys. A 414, 493 (1984)

    Article  ADS  Google Scholar 

  34. K. Liu, Radiative negative pion proton capture and the low energy theorem. Ph.D. thesis, University of Kentucky (1994) (unpublished)

Download references

Acknowledgements

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Awards No. DE-SC0016583 and DE-SC0016582. The authors A. E. K. and V. E. T. acknowledge the support of the RFBR under Award no. 16-02-00767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Strakovsky.

Additional information

Communicated by Klaus Peters

Appendix: the reaction amplitude

Appendix: the reaction amplitude

The invariant amplitude \(M_{\gamma d}\) of the reaction \(\gamma d\rightarrow \pi ^- pp\) can be written as

$$\begin{aligned} M_{\gamma d}= & {} c\varphi ^ + _1(L +i{\varvec{K}}\cdot {\varvec{\sigma }})\varphi ^c_2 , \nonumber \\ c= & {} 16\pi W\sqrt{m} \quad (W = m+ m_\pi ) , \nonumber \\ L= & {} L_a + L_b + L_c + L_d, \nonumber \\ L_a= & {} L^{(s)}_a + L^{(d)}_a , \nonumber \\ {\varvec{K}}= & {} {\varvec{K}}_a + {\varvec{K}}_b + {\varvec{K}}_c + {\varvec{K}}_d , \nonumber \\ {\varvec{K}}_a= & {} {\varvec{K}}^{(s)}_a + {\varvec{K}}^{(d)}_a . \end{aligned}$$
(A.1)

Here: \(\varphi _{1,2}\) are the spinors of the final protons (\(\varphi ^+\varphi \equiv 1\)) and \(\varphi ^c\equiv \sigma _2\varphi ^*\); the subscripts abcd (in \(L_a\),.., \({\varvec{K}}_a\),..) correspond to the diagrams in Fig. 2; \(L^{(s)}_a\) and \({\varvec{K}}^{(s)}_a\) (\(L^{(d)}_a\) and \({\varvec{K}}^{(d)}_a\)) are the IA amplitudes with S-wave (D-wave) part of the DWF. The amplitudes \(L_a\),.. and \({\varvec{K}}_a\),.. are given below, where \({\varvec{e}}\) and \({\varvec{\epsilon }}\) are the photon and deuteron polarization three-vectors, respectively. Hereafter: \({\varvec{q}}\), \({\varvec{k}}\), \({\varvec{p}}_{1,2}\) stand for the three-momenta of the initial photon, final pion and final protons, respectively, in the laboratory frame.

(a) IA terms:

$$\begin{aligned} L^{(s)}_a= & {} x_aE_{0+}({\varvec{e}}\cdot {\varvec{\epsilon }}) ,\quad x_a = f_1 + f_2 , \nonumber \\ L^{(d)}_a= & {} -[g_1({\varvec{e}}\cdot {\varvec{n}}_1)({\varvec{e}}\cdot {\varvec{n}}_2) + \nonumber \\&+g_2({\varvec{e}}\cdot {\varvec{n}}_2)({\varvec{\epsilon }}\cdot {\varvec{n}}_1)]E_{0+} , \nonumber \\ {\varvec{K}}^{(s)}_a= & {} y_aE_{0+}[{\varvec{e}}\times {\varvec{\epsilon }}],\quad y_a = f_2 - f_1 , \nonumber \\ {\varvec{K}}^{(d)}_a= & {} (g_2({\varvec{\epsilon }}\cdot {\varvec{n}}_2)[{\varvec{n}}_2 \times \!{\varvec{e}}] - \nonumber \\&-g_1({\varvec{\epsilon }}\cdot {\varvec{n}}_1)[{\varvec{n}}_1 \times {\varvec{e}}])E_{0+} ; \nonumber \\ \displaystyle f_{1,2}= & {} \frac{u(p_{1,2})}{\sqrt{2}} + \frac{w(p_{1,2})}{2} , \nonumber \\ \displaystyle g_{1,2}= & {} \frac{3}{2}\,w(p_{1,2}) , \quad {\varvec{n}}_{1,2} = \frac{{\varvec{p}}_{1,2}}{p_{1,2}} . \end{aligned}$$
(A.2)

Here \({\varvec{n}}_{1,2}\) – the unit vectors; u(p) and w(p) are the S- and D-wave parts of the DWF. We use DWF [25], parametrized in the form

$$\begin{aligned} u(p) = \sum _j\frac{C_j}{p^2 + m^2_j} ,\quad w(p) = \sum _j\frac{D_j}{p^2 + m^2_j} \end{aligned}$$
(A.3)

with normalization \(\int d{\varvec{p}}\,[u^2(p) + w^2(p)] = (2\pi )^3\) .

(b) \(\underline{pp\text {-FSI terms}}\):

$$\begin{aligned} L_b= & {} x_b E_{0+}({\varvec{e}}\cdot {\varvec{\epsilon }}),\quad {\varvec{K}}_b = 0 , \nonumber \\ x_b= & {} 2 I_{pp}(p,\beta ,\Delta )f_{pp}(p) , \nonumber \\ \displaystyle I_{pp}(p,\beta ,\Delta )= & {} \int \frac{d{\varvec{x}}\,f(x,p)u(|{\varvec{x}}+ {\varvec{\Delta }}|)}{2\pi ^2\sqrt{2}\,(x^2 - p^2 -i0)} , \nonumber \\ \displaystyle f(x,p)= & {} \frac{p^2 + \beta ^2}{x^2 + \beta ^2} , \quad {\varvec{\Delta }}= \frac{1}{2}({\varvec{p}}_1 + {\varvec{p}}_2) . \end{aligned}$$
(A.4)

Here \(f_{pp}(p)\) is the on-shell S-wave pp-scattering amplitude in the effective-range-approximation with Coulomb effects included [21]; \({\varvec{x}}\) is the relative three-momentum of the intermediate nucleons; f(xp) is the form factor in the off-shell pp-scattering amplitude \(f^{off}_{pp}(x,p) = f(x,p)f_{pp}(p)\) with parameter \(\beta = 1.2\,\) fm, used earlier [20, 22]. The integral \(I_{pp}(p,\beta ,\Delta )\) is written out in Eqs. (A.9) and (A.10).

(c) \(\underline{\pi N\text {-FSI terms}}\):

$$\begin{aligned} L_c= & {} x_cE_{0+}a_{\pi ^- p}\,({\varvec{e}}\cdot {\varvec{\epsilon }}) , \quad x_c = I_1 + I_2; \nonumber \\ \displaystyle {\varvec{K}}_c= & {} y_cE_{0+}a_{\pi ^- p}\,[{\varvec{e}}\times {\varvec{\epsilon }}] , \quad y_c =I_1 - I_2; \nonumber \\ \displaystyle I_i= & {} I(k^2_i,\Delta _i) , \quad {\varvec{\Delta }}_i = \frac{m}{m + m_\pi }({\varvec{k}}+ {\varvec{p}}_i) . \end{aligned}$$
(A.5)

Here: \(k_i\) are the relative momenta in the pion-proton pairs \(\pi ^-p_i\, (i = 1,2)\); \(a_{\pi ^- p}\) is the \(\pi ^-p\)-scattering amplitude in the scattering-length approximation (see the main text), \(m_\pi \) and m are defined after Eq. (2) in the main text. The integral \(I(k^2_{1,2}, \Delta _{1,2})\) is written out below in Eq. (A.9).

(d) 2-loop terms:

$$\begin{aligned} L_d= & {} x_d E_{0+}({\varvec{e}}\cdot {\varvec{\epsilon }}) ,\quad {\varvec{K}}_d = 0 , \nonumber \\ \displaystyle x_d= & {} 2K(p,b,\Delta )f_{pp}(p)a_{\pi ^- p} , \nonumber \\ \displaystyle K(p,b,\Delta )= & {} \frac{m + m_\pi }{m} \nonumber \\&\displaystyle \times \int \frac{d{\varvec{x}}d{\varvec{y}}\,u(|{\varvec{x}}+ {\varvec{y}}- \Delta |)f(x,p)}{4\pi ^4\sqrt{2}\,(x^2 - p^2 -i0)(y^2 - b^2 - i0)}, \nonumber \\ \displaystyle {\varvec{\Delta }}= & {} \frac{1}{2}({\varvec{q}}+ {\varvec{k}}) ,\quad b^2 = 2 m_\pi (\sqrt{s} - \sqrt{s_0})\ge 0 .\nonumber \\ \end{aligned}$$
(A.6)

Here \(\sqrt{s_0} = 2m_p + m_\pi \); f(xp) is given in Eq. (A.4); the denominator \((y^2 - b^2 - i0)\) of the pion propagator is obtained, neglecting the kinetic energies (static approximation) of the intermediate nucleons. The expression for \(K(p,b,\Delta )\) is given in Eqs. (A.11) and (A.12).

1.1 The square of the amplitude

The square of the amplitude Eq. (A.1) for unpolarized nucleons is \(|M_{\gamma d}|^2 = 2c^2\,(|L|^2 + |{\varvec{K}}|^2)\). Averaging it over the photon and deuteron polarization states, we write

$$\begin{aligned} \overline{|M_{\gamma d}|^2} = 2c^2\,(\overline{|L|^2} + \overline{|{\varvec{K}}|^2}) . \end{aligned}$$
(A.7)

Making use of Eqs. (A.2), (A.4), (A.5), and (A.6), we have

$$\begin{aligned} \displaystyle L= & {} A E_{0+}({\varvec{e}}\cdot {\varvec{\epsilon }}) + L^{(d)}_a , \quad A = x_a + x_b\!+\!x_c + x_d , \\ \displaystyle {\varvec{K}}\!= & {} B E_{0+}[{\varvec{e}}\!\times {\varvec{\epsilon }}] + {\varvec{K}}^{(d)}_a , \quad B = y_a + y_c . \end{aligned}$$

Then, we obtain

$$\begin{aligned} \displaystyle \overline{|L|^2}= & {} \frac{1}{3}\biggl [|A|^2 - (g_1 n^2_{1t} + g_2 n^2_{2t}) \mathrm{Re}[A] \nonumber \\&\displaystyle + \frac{1}{2}\,(g^2_1 n^2_{1t} + g^2_2 n^2_{2t}) \nonumber \\&\displaystyle + g_1g_2({\varvec{n}}_1\cdot {\varvec{n}}_2)({\varvec{n}}_{1t}\cdot {\varvec{n}}_{2t})\biggr ] (E_{0+})^2 , \nonumber \\ \displaystyle \overline{|{\varvec{K}}|^2}= & {} \frac{1}{3}\biggl [2|B|^2\displaystyle + [g_1(1 +n^2_{1z}) - g_2(1 + n^2_{2z})] \mathrm{Re}[B] \nonumber \\&\displaystyle + \frac{1}{2}\,[g^2_1(1 + n^2_{1z}) +g^2_2(1 + n^2_{2z})] \nonumber \\&\displaystyle - g_1g_2({\varvec{n}}_1\cdot {\varvec{n}}_2)[({\varvec{n}}_1\cdot {\varvec{n}}_2) + n_{1z}n_{2z}]\biggr ] (E_{0+})^2 . \end{aligned}$$
(A.8)

Here \({\varvec{n}}_{1t,2t}\) and \(n_{1z,2z}\) are, respectively, the transverse parts and z-components of the unit vectors \({\varvec{n}}_{1,2}\), defined in Eq. (A.2), with z-axis along the photon three-momentum \({\varvec{q}}\) in the laboratory frame.

1.2 The integrals

The integral \(I_{pp}(p,\beta ,\Delta )\) in Eq. (A.4) can be rewritten as

$$\begin{aligned} I_{pp}(p,\beta ,\Delta )= & {} I(p^2,\Delta ) - I(-\beta ^2,\Delta ) , \nonumber \\ \displaystyle I(a^2,\Delta )= & {} \int \frac{d{\varvec{x}}\,u(|{\varvec{x}}+ {\varvec{\Delta }}|)}{2\pi ^2\sqrt{2}\,(x^2 - a^2 -i0)} . \end{aligned}$$
(A.9)

For the DWF, given in the form Eq. (A.3), we obtain

$$\begin{aligned} \displaystyle I(a^2 > 0,\Delta )= & {} \sum _j\frac{C_j}{2\Delta \sqrt{2}} \biggl [\arctan \frac{|a| + \Delta }{m_j} \nonumber \\&\displaystyle - \arctan \frac{|a| - \Delta }{m_j} + \frac{i}{2}\ln \frac{m^2_j + (|a| + \Delta )^2}{m^2_j + (|a| - \Delta )^2} \biggr ] , \nonumber \\ \displaystyle I(a^2 < 0,\Delta )= & {} \sum _j\frac{C_j}{\Delta \sqrt{2}} \,\arctan \frac{\Delta }{m_j + |a|} . \end{aligned}$$
(A.10)

The integral \(K(p,b,\Delta )\) in Eq. (A.6) can be written as

$$\begin{aligned} K(p,b,\Delta )= & {} K_0(p^2,b^2,\Delta ) - K_0(-\beta ^2,b^2,\Delta ) , \nonumber \\ \displaystyle K_0(a^2,b^2,\Delta )= & {} \frac{m + m_\pi }{m} \nonumber \\ \displaystyle&\times \int \frac{d{\varvec{x}}d{\varvec{y}}\,u(|{\varvec{x}}+ {\varvec{y}}- \Delta |)}{4\pi ^4\sqrt{2}\,(x^2 - a^2 - i0)(y^2 - b^2 -i0)} .\nonumber \\ \end{aligned}$$
(A.11)

For the DWF of the type Eq. (A.3), we obtain

$$\begin{aligned} \displaystyle K_0(a^2,b^2,\Delta )= & {} \sum _j\frac{C_j}{\Delta \sqrt{2}}\Bigl [U_j(a^2,b^2,\Delta ) \nonumber \\ \displaystyle&-U_j(a^2,b^2, - \Delta )\Bigr ] , \nonumber \\ \displaystyle U_j(a^2,b^2,\Delta )= & {} -x_jA_j - yL_j \nonumber \\ \displaystyle&+i(yA_j - x_jL_j) , \nonumber \\ \displaystyle L_j= & {} \frac{1}{2}\ln (x^2_j + y^2),~ A_j = \arctan \frac{y}{x_j} ; \nonumber \\ \displaystyle a^2 >0 :~ x_j= & {} m_j,~ y = |a| + \!|b| + \Delta ; \nonumber \\ \displaystyle a^2 <0 :~ x_j= & {} m_j + |a|,\quad y = |b| + \Delta . \end{aligned}$$
(A.12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briscoe, W.J., Kudryavtsev, A.E., Strakovsky, I.I. et al. Threshold \(\pi ^-\) photoproduction on the neutron. Eur. Phys. J. A 56, 218 (2020). https://doi.org/10.1140/epja/s10050-020-00221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00221-w

Navigation