Skip to main content
Log in

A goodness-of-fit test for regression models with spatially correlated errors

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

The problem of assessing a parametric regression model in the presence of spatial correlation is addressed in this work. For that purpose, a goodness-of-fit test based on a \(L_2\)-distance comparing a parametric and nonparametric regression estimators is proposed. Asymptotic properties of the test statistic, both under the null hypothesis and under local alternatives, are derived. Additionally, a bootstrap procedure is designed to calibrate the test in practice. Finite sample performance of the test is analyzed through a simulation study, and its applicability is illustrated using a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcalá J, Cristóbal J, González-Manteiga W (1999) Goodness-of-fit test for linear models based on local polynomials. Stat Probab Lett 42:39–46

    Article  MathSciNet  Google Scholar 

  • Azzalini A, Bowman AW, Härdle W (1989) On the use of nonparametric regression for model checking. Biometrika 76:1–11

    Article  MathSciNet  Google Scholar 

  • Biedermann S, Dette H (2000) Testing linearity of regression models with dependent errors by kernel based methods. Test 9:417–438

    Article  MathSciNet  Google Scholar 

  • Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations, vol 18. OUP Oxford, Oxford

    MATH  Google Scholar 

  • Bowman AW, Crujeiras RM (2013) Inference for variograms. Comput Stat Data Anal 66:19–31

    Article  MathSciNet  Google Scholar 

  • Cressie N (1985) Fitting variogram models by weighted least squares. J Int Assoc Math Geol 17:563–586

    Article  Google Scholar 

  • Cressie NA (1993) Statistics for spatial data. Wiley, New York

    Book  Google Scholar 

  • Crujeiras RM, Van Keilegon I (2010) Least squares estimation of nonlinear spatial trends. Comput Stat Data Anal 54:452–465

    Article  MathSciNet  Google Scholar 

  • Diblasi A, Bowman A (2001) On the use of the variogram in checking for independence in spatial data. Biometrics 57:211–218

    Article  MathSciNet  Google Scholar 

  • Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York

    Book  Google Scholar 

  • Eubank RL, Spiegelman CH (1990) Testing the goodness of fit of a linear model via nonparametric regression techniques. J Am Stat Assoc 85:387–392

    Article  MathSciNet  Google Scholar 

  • Eubank RL, Li CS, Wang S (2005) Testing lack-of-fit of parametric regression models using nonparametric regression techniques. Stat Sin 15:135–152

    MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, London

    MATH  Google Scholar 

  • Fernández-Casal R (2016) npsp: nonparametric spatial (geo)statistics, R package version 0.5-3. http://cran.r-project.org/package=npsp. Accessed 1 Sept 2019

  • Fernández-Casal R, Castillo-Páez S, García-Soidán P (2017) Nonparametric estimation of the small-scale variability of heteroscedastic spatial processes. Spat Stat 22:358–370

    Article  MathSciNet  Google Scholar 

  • Francisco-Fernandez M, Opsomer JD (2005) Smoothing parameter selection methods for nonparametric regression with spatially correlated errors. Can J Stat Rev Can Stat 33:279–295

    Article  MathSciNet  Google Scholar 

  • Francisco-Fernández M, Jurado-Expósito M, Opsomer J, López-Granados F (2006) A nonparametric analysis of the spatial distribution of Convolvulus arvensis in wheat-sunflower rotations. Environmetrics 17:849–860

    Article  MathSciNet  Google Scholar 

  • Francisco-Fernández M, Quintela-del Río A, Fernández-Casal R (2012) Nonparametric methods for spatial regression. An application to seismic events. Environmetrics 23(1):85–93

    Article  MathSciNet  Google Scholar 

  • González-Manteiga W, Crujeiras RM (2013) An updated review of Goodness-of-Fit tests for regression models. Test 22:361–411

    Article  MathSciNet  Google Scholar 

  • González-Manteiga W, Vilar-Fernández J (1995) Testing linear regression models using non-parametric regression estimators when errors are non-independent. Comput Stat Data Anal 20:521–541

    Article  MathSciNet  Google Scholar 

  • Hallin M, Lu Z, Tran LT (2004) Local linear spatial regression. Ann Stat 32:2469–2500

    Article  MathSciNet  Google Scholar 

  • Härdle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21:1926–1947

    Article  MathSciNet  Google Scholar 

  • Harper WV, Furr JM (1986) Geostatistical analysis of potentiometric data in Wolfcamp aquifer of the Palo Duro Basin, Texas. Technical report, Battelle Memorial Inst

  • Kim TY, Ha J, Hwang SY, Park C, Luo ZM (2013) Central limit theorems for reduced U-statistics under dependence and their usefulness. Aust N Z J Stat 55:387–399

    Article  MathSciNet  Google Scholar 

  • Li CS (2005) Using local linear kernel smoothers to test the lack of fit of nonlinear regression models. Stat Methodol 2:267–284

    Article  MathSciNet  Google Scholar 

  • Liu XH (2001) Kernel smoothing for spatially correlated data. Ph.D. thesis, Department of Statistics, Iowa State University

  • Maglione D, Diblasi A (2004) Exploring a valid model for the variogram of an isotropic spatial process. Stoch Environ Res Risk Assess 18:366–376

    Article  Google Scholar 

  • Nadaraya EA (1964) On estimating regression. Theory Probab Appl 9:141–142

    Article  Google Scholar 

  • Opsomer J, Francisco-Fernández M (2010) Finding local departures from a parametric model using nonparametric regression. Stat Pap 51:69–84

    Article  MathSciNet  Google Scholar 

  • Park C, Kim TY, Ha J, Luo ZM, Hwang SY (2015) Using a bimodal kernel for a nonparametric regression specification test. Stat Sin 25:1145–1161

    MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 1 Sept 2019

  • Ribeiro PJ, Diggle PJ (2016) geoR: analysis of geostatistical data, R package version 1.7-5.2. https://cran.r-project.org/package=geoR. Accessed 1 Sept 2019

  • Rozanov YA (1967) Stationary random processes. Holden Day, Oakland

    MATH  Google Scholar 

  • Ruppert D, Wand MP (1994) Multivariate locally weighted least squares regression. Ann Stat 22:1346–1370

    Article  MathSciNet  Google Scholar 

  • Vilar-Fernández J, González-Manteiga W (1996) Bootstrap test of goodness of fit to a linear model when errors are correlated. Commun Stat Theory Methods 25:2925–2953

    Article  MathSciNet  Google Scholar 

  • Watson GS (1964) Smooth regression analysis. Sankhya 26:359–372

    MathSciNet  MATH  Google Scholar 

  • Weihrather G (1993) Testing a linear regression model against nonparametric alternatives. Metrika 40:367–379

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Xunta de Galicia Grant ED481A-2017/361 and the European Union (European Social Fund—ESF). This research has been partially supported by MINECO Grants MTM2014-52876-R, MTM2016-76969-P and MTM2017-82724-R, and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-015 and ED431C-2017-38, and Centro Singular de Investigación de Galicia ED431G/01), all of them through the ERDF. We also thank two reviewers and the Associate Editor for their helpful comments and suggestions that significantly improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Meilán-Vila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 744 KB)

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

The test statistic (6) can be written as

$$\begin{aligned} T_n= & {} n|\mathbf {H}|^{1/2}\int (\hat{m}^{LL}_{\mathbf {H}}(\mathbf {x})-\hat{m}^{LL}_{\mathbf {H},\hat{\varvec{\beta }}}(\mathbf {x}))^2w(\mathbf {x})\hbox {d}\mathbf {x}\\= & {} n|\mathbf {H}|^{1/2}\int \bigg [e_1'\left( \begin{array}{ll} \frac{1}{n}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x}) &{} \frac{1}{n}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(\mathbf {X}_i-\mathbf {x})' \\ \frac{1}{n}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(\mathbf {X}_i-\mathbf {x}) &{} \frac{1}{n}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(\mathbf {X}_i-\mathbf {x}) (\mathbf {X}_i-\mathbf {x}) ' \end{array} \right) ^{-1}\\&\cdot \left( \begin{array}{ll} \frac{1}{n}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(Z_i-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i)) \\ \frac{1}{n}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(\mathbf {X}_i-\mathbf {x}) (Z_i-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i)) \end{array} \right) \bigg ]^2w(\mathbf {x})\hbox {d}\mathbf {x}. \end{aligned}$$

Taking into account that, for every \(\eta >0\), \(\hat{f}_{\mathbf {H}}(\mathbf {x})=\frac{1}{n}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})=f(\mathbf {x})+ O_p(n^{-2/(4+d)+\eta })\) uniformly in \(\mathbf {x}\) (see Härdle and Mammen 1993), and according to Liu (2001), it follows that

$$\begin{aligned} T_n= & {} n|\mathbf {H}|^{1/2}\int \bigg [ \frac{1}{nf(\mathbf {x})}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(Z_i-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i))\nonumber \\&-\nabla f(\mathbf {x}) \frac{1}{nf^{2}(\mathbf {x})}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(\mathbf {X}_i-\mathbf {x}) (Z_i-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i))\bigg ]^2w(\mathbf {x})\hbox {d}\mathbf {x}\nonumber \\&\qquad +O_p(n^{-2/(4+d)+\eta })\nonumber \\= & {} T_{n1}+T_{n2}+2T_{n12}+O_p(n^{-2/(4+d)+\eta }), \end{aligned}$$
(11)

where \(\nabla f(\mathbf {x})\) denotes the \(d \times 1\) vector of first-order partial derivatives of f, and

$$\begin{aligned} T_{n1}= & {} n|\mathbf {H}|^{1/2}\int \bigg [ \frac{1}{nf(\mathbf {x})}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(Z_i-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i))\bigg ]^2w(\mathbf {x})\hbox {d}\mathbf {x},\\ T_{n2}= & {} n|\mathbf {H}|^{1/2}\int \bigg [ \nabla f(\mathbf {x}) \frac{1}{nf^{2}(\mathbf {x})}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(\mathbf {X}_i-\mathbf {x}) (Z_i-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i))\bigg ]^2w(\mathbf {x})\hbox {d}\mathbf {x}, \end{aligned}$$

denoting by \(T_{n12}\) the integral of the cross product. Regarding \(T_{n1}\), taking into account that the regression models considered are of the form \(m(\mathbf {x}) =m_{{\varvec{\beta }}_0}(\mathbf {x}) + n^{-1/2}|\mathbf {H}|^{-1/4}g(\mathbf {x}) \), one gets that

$$\begin{aligned} T_{n1}= & {} n|\mathbf {H}|^{1/2}\int \bigg [ \frac{1}{nf(\mathbf {x})}\sum _{i=1}^{n} K_{\mathbf {H}}(\mathbf {X}_i-\mathbf {x})(m_{{\varvec{\beta }}_0}(\mathbf {X}_i)+n^{-1/2}|\mathbf {H}|^{-1/4}g(\mathbf {X}_i)\\&+\,\varepsilon _i-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i))\bigg ]^2w(\mathbf {x})\hbox {d}\mathbf {x}\\= & {} n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})}(I_1(\mathbf {x})+I_2(\mathbf {x})+I_3(\mathbf {x}))^2w(\mathbf {x})\hbox {d}\mathbf {x}, \end{aligned}$$

where

$$\begin{aligned} I_1(\mathbf {x})= & {} \dfrac{1}{n}\sum _{i=1}^n K_{\mathbf {H}}\left( {\mathbf {X}_i-\mathbf {x}}\right) (m_{{\varvec{\beta }}_0}(\mathbf {X}_i)-m_{\hat{{\varvec{\beta }}}}(\mathbf {X}_i)),\\ I_2(\mathbf {x})= & {} \dfrac{1}{n}\sum _{i=1}^n K_{\mathbf {H}}\left( {\mathbf {X}_i-\mathbf {x}}\right) n^{-1/2}|\mathbf {H}|^{-1/4}g(\mathbf {X}_i),\\ I_3(\mathbf {x})= & {} \dfrac{1}{n}\sum _{i=1}^n K_{\mathbf {H}}\left( {\mathbf {X}_i-\mathbf {x}}\right) \varepsilon _i. \end{aligned}$$

Under assumptions (A1)–(A3) and (A7), and given that the difference \(m_{\hat{{\varvec{\beta }}}}(\mathbf {x})-m_{{{\varvec{\beta }}}_0}(\mathbf {x})=O_p(n^{-1/2})\) uniformly in \(\mathbf {x}\), it is obtained that

$$\begin{aligned}&n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})}I_1^2(\mathbf {x})w(\mathbf {x})\hbox {d}\mathbf {x}=O_p(|\mathbf {H}|^{1/2}). \end{aligned}$$
(12)

As for the term \(I_2(\mathbf {x})\), taking into account Lemma 1 (available in the Online Supplementary Material), by straightforward calculations it follows that

$$\begin{aligned}&n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})}I_2^2(\mathbf {x})w(\mathbf {x})\hbox {d}\mathbf {x} \nonumber \\&\quad = \int (K_\mathbf {H}*g)^2(\mathbf {x})w(\mathbf {x})\hbox {d}\mathbf {x}\cdot \{1+o_p(1)\}. \end{aligned}$$
(13)

Note that the leading term of (13) is the term \(b_{1\mathbf {H}}\) in Theorem 1. Finally, \(I_3(\mathbf {x})\) (associated with the error component) can be decomposed as

$$\begin{aligned}&n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})}I_3^2(\mathbf {x})w(\mathbf {x})\hbox {d}\mathbf {x}= n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})n^2}\sum _{i=1}^n K^2_{\mathbf {H}}\left( {\mathbf {X}_i-\mathbf {x}}\right) \varepsilon ^2(\mathbf {X}_i)w(\mathbf {x})\hbox {d}\mathbf {x}\\&\qquad +n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})n^2}\sum _{i\ne j} K_{\mathbf {H}}\left( {\mathbf {X}_i-\mathbf {x}}\right) K_{\mathbf {H}}\left( {\mathbf {X}_j-\mathbf {x}}\right) \varepsilon _i\varepsilon _jw(\mathbf {x})\hbox {d}\mathbf {x}\\&\quad =I_{31}+I_{32}. \end{aligned}$$

For the first term, one gets that

$$\begin{aligned} \mathbb {E}(I_{31})= & {} \mathbb {E}\bigg [\sigma ^2n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})}\frac{1}{n^2}\sum _{i=1}^n K^2_{\mathbf {H}}\left( {\mathbf {X}_i-\mathbf {x}}\right) w(\mathbf {x})\hbox {d}\mathbf {x}\bigg ]\nonumber \\= & {} \sigma ^2 |\mathbf {H}|^{-1/2}{}K^{(2)}(\mathbf {0})\int \dfrac{w(\mathbf {x})}{f(\mathbf {x})}\hbox {d}\mathbf {x}\cdot \{1+o(1)\}. \end{aligned}$$

Similarly, it is obtained that \(\text{ Var }(I_{31})=O_p(n^{-1}|\mathbf {H}|^{-1})\), and, therefore,

$$\begin{aligned} I_{31}=\sigma ^2 |\mathbf {H}|^{-1/2}{}K^{(2)}(\mathbf {0})\int \dfrac{w(\mathbf {x})}{f(\mathbf {x})}\hbox {d}\mathbf {x}\cdot \{1+o_p(1)\}. \end{aligned}$$
(14)

The leading term of (14) corresponds to the first term of \(b_{0\mathbf {H}}\) in Theorem 1. For the term \(I_{32}\), let

$$\begin{aligned} \kappa _{ij}= & {} n|\mathbf {H}|^{1/2}\int \frac{1}{f^2(\mathbf {x})}\dfrac{1}{n^2} K_{\mathbf {H}}\left( {\mathbf {X}_i-\mathbf {x}}\right) K_{\mathbf {H}}\left( {\mathbf {X}_j-\mathbf {x}}\right) \varepsilon _i\varepsilon _jw(\mathbf {x})\hbox {d}\mathbf {x}, \end{aligned}$$

thus,

$$\begin{aligned} I_{32}=\sum _{i\ne j}\kappa _{ij}, \end{aligned}$$

and this can be seen as a U-statistic with degenerate kernel. To obtain the asymptotic normality of \(I_{32}\), considering assumption (A6), Theorem 2 given in Kim et al. (2013) will be applied. For this term, under assumptions (A4), (A7), (A8) and (A9), and according to Liu (2001), one gets that

$$\begin{aligned} \mathbb {E}(I_{32})= & {} \nonumber \dfrac{n-1}{n}|\mathbf {H}|^{-1/2}\sigma ^2\int \!\!\! \left( n|\mathbf {H}|\int \!\! \int \!\! K\left( \mathbf {p}\right) K\left( \mathbf {q}\right) \rho _n(\mathbf {H}(\mathbf {p}-\mathbf {q}))d\mathbf {p}d\mathbf {q}\right. \nonumber \\&+o(1)\bigg )w(\mathbf {x})\hbox {d}\mathbf {x}\nonumber \\= & {} |\mathbf {H}|^{-1/2}\sigma ^2K^{(2)}(0)\rho _{c}\int w(\mathbf {x})\hbox {d}\mathbf {x}\cdot \{1+o(1)\}, \end{aligned}$$
(15)

corresponding to the second term of \(b_{0\mathbf {H}}\) in Theorem 1.

Similarly, it can be shown that the leading term of the variance of \(I_{32}\) is given by:

$$\begin{aligned} V= & {} 2\sigma ^4 K^{(4)}(0)\bigg [\int \dfrac{w^2(\mathbf {x})}{f^2(\mathbf {x})}\hbox {d}\mathbf {x}+2\rho _{c}\int \dfrac{w^2(\mathbf {x})}{f(\mathbf {x})}\hbox {d}\mathbf {x}+4\rho ^2_{c}\int {w^2(\mathbf {x})}\hbox {d}\mathbf {x}\bigg ]. \end{aligned}$$
(16)

Therefore, using the central limit theorem for degenerate reduced U-statistics under \(\alpha \)-mixing conditions, given in Kim et al. (2013), it is obtained that the term \(I_{32}\) converges, in distribution, to a normal distribution with mean the leading term of (15) and variance (16).

On the other hand, in virtue of the Cauchy–Schwarz inequality, the cross terms in \(T_{n1}\) resulting from the products of \(I_1(\mathbf {x})\), \(I_2(\mathbf {x})\) and \(I_3(\mathbf {x})\) are all of smaller order. Therefore, combining the results given in (12)–(14), and the asymptotic normality of \(I_{32}\) [with bias the leading term of (15) and variance (16)], one gets

$$\begin{aligned} V^{-1/2}(T_{n1}-b_{0\mathbf {H}}-b_{1\mathbf {H}})\rightarrow _{\mathcal {L}} N(0,1) \text { as } n\rightarrow \infty , \end{aligned}$$
(17)

where

$$\begin{aligned} b_{0\mathbf {H}}= & {} |\mathbf {H}|^{-1/2}\sigma ^2K^{(2)}(\mathbf {0})\bigg [\int \dfrac{w(\mathbf {x})}{f(\mathbf {x})}\hbox {d}\mathbf {x}+\rho _{c}\int {w(\mathbf {x})}\hbox {d}\mathbf {x}\bigg ],\\ b_{1\mathbf {H}}= & {} \int ({K}_{\mathbf {H}}*g)^2(\mathbf {x})w(\mathbf {x})\hbox {d}\mathbf {x}, \end{aligned}$$

and

$$\begin{aligned} V=2\sigma ^4 K^{(4)}(0)\bigg [\int \dfrac{w^2(\mathbf {x})}{f^2(\mathbf {x})}\hbox {d}\mathbf {x}+2\rho _{c}\int \dfrac{w^2(\mathbf {x})}{f(\mathbf {x})}\hbox {d}\mathbf {x}+4\rho ^2_{c}\int {w^2(\mathbf {x})}\hbox {d}\mathbf {x}\bigg ]. \end{aligned}$$

The term \(T_{n2}\) in \(T_n\) is of smaller order than \(T_{n1}\) (specifically, \(T_{n2}=O_p(\text{ tr }(\mathbf {H}^2)T_{n1})\)), and by the Cauchy–Schwarz inequality, the cross term \(T_{n12}\) is of smaller order as well. Therefore, from (11), it follows that

$$\begin{aligned} T_n=T_{n1}+O_p(tr(\mathbf {H}^2))+O_p(n^{-2/(4+d)+\eta }). \end{aligned}$$

Taking into account (17), it follows that

$$\begin{aligned} V^{-1/2}(T_n-b_{0\mathbf {H}}-b_{1\mathbf {H}})\rightarrow _{\mathcal {L}} N(0,1) \text { as } n\rightarrow \infty . \end{aligned}$$

with \(b_{0\mathbf {H}}\), \(b_{1\mathbf {H}}\) and V given above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meilán-Vila, A., Opsomer, J.D., Francisco-Fernández, M. et al. A goodness-of-fit test for regression models with spatially correlated errors. TEST 29, 728–749 (2020). https://doi.org/10.1007/s11749-019-00678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-019-00678-y

Keywords

Mathematics Subject Classification

Navigation