Skip to main content
Log in

Plasmonic color pixels fabricated by nanoimprint process

  • Special Section: Regular Paper
  • International Symposium on Imaging, Sensing, and Optical Memory (ISOM’ 19), Niigata, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Plasmonic nanostructures or metasurfaces have recently been actively researched for structural color generation. Controlling the plasmonic resonant wavelengths of surface plasmon polaritons excited along the metal dielectric interfaces, arising from the resonant interaction with incident electromagnetic waves, reflection or transmission color can be effectively tuned in the visible wavelength region. However, the plasmonic structures are conventionally fabricated by electron beam lithography or focused ion beam, both so expensive and unproductive that they are not practical for large-scale production. In this report, we demonstrate a simple plasmonic nanostructure for various color generation fabricated by a quite simple and cost-effective method applying nanoimprint process and aluminum film deposition. We experimentally evaluated the reflectance spectra of the color pallets composed of the plasmonic nanostructures (plasmonic color pixels) and compared with the simulation results. We confirmed the wide-range tuning ability of reflection color by changing the size parameter of the plasmonic nanostructures. Therefore, this method for high-definitive color generation can be expected to be applied to a wide range of fields including various applications, such as security labels, anti-counterfeiting devices, information storage and functionalized decoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y., Kaito, T., Matsui, S.: Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition. J. Vac. Sci. Technol. B 23(2), 570 (2005)

    Article  Google Scholar 

  2. Kinoshita, S., Yoshioka, S., Miyazaki, J.: Physics of structural colours. Rep. Prog. Phys. 71, 076401 (2008)

    Article  ADS  Google Scholar 

  3. Sun, J., Bhushan, B., Tong, J.: Structural coloration in nature. RSC Adv. 3, 14862 (2013)

    Article  Google Scholar 

  4. Xu, T., Wu, Y., Luo, X., Guo, L.: Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010)

    Article  ADS  Google Scholar 

  5. Kumar, K., Duan, H., Hegde, R.S., Koh, S.C.W., Wei, J.N., Yang, J.K.W.: Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557 (2012)

    Article  ADS  Google Scholar 

  6. Tan, S.J., Zhang, L., Zhu, D., Goh, X.M., Wang, Y.M., Kumar, K., Qiu, C., Yang, J.K.W.: Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4499 (2014)

    Article  Google Scholar 

  7. Zhu, X., Vannahme, C., Nielsen, E., Mortensen, N., Kristensen, A.: Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325 (2016)

    Article  ADS  Google Scholar 

  8. Mudachathi, R., Tanaka, T.: Up scalable full color plasmonic pixels with controllable hue, brightness and saturation. Sci. Rep. 7, 1199 (2017)

    Article  ADS  Google Scholar 

  9. Miyata, M., Hatada, H., Takahara, J.: Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett. 16, 3166 (2016)

    Article  ADS  Google Scholar 

  10. Duan, X., Kamin, S., Liu, N.: Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017)

    Article  ADS  Google Scholar 

  11. Nagasaki, Y., Hotta, I., Suzuki, M., Takahara, J.: Metal-masked MIE-resonant full-color printing for achieving free-space resolution limit. ACS Photonics 5(9), 3849 (2018)

    Article  Google Scholar 

  12. Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint of sub—25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114 (1995)

    Article  ADS  Google Scholar 

  13. Vratzov, B., Fuchs, A., Lemme, M., Henschel, W., Kurz, H.: Large scale ultraviolet-based nanoimprint lithography. J. Vac. Sci. Technol. B 21(2), 2760 (2003)

    Article  Google Scholar 

  14. Mano, I., Taniguchi, J.: Fabrication of an antireflection structure on an aspherical lens using a UV-curable inorganic–organic hybrid polymer. Jpn. J. Appl. Phys. 58, SDDJ03 (2019)

    Article  Google Scholar 

  15. Li, W., Hu, J., Chou, S.: Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt. Express 19, 21098 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Takeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, M., Takahara, R. & Hasuike, N. Plasmonic color pixels fabricated by nanoimprint process. Opt Rev 27, 427–431 (2020). https://doi.org/10.1007/s10043-020-00610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-020-00610-y

Keywords

Navigation