Skip to main content
Log in

Singular-perturbed control for a novel SEA-actuated MBT autoloader subject to chassis oscillations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Autoloaders that replace the human loaders performing ammunition transferring tasks in main battle tanks have been confronted with the problem of poor compliance abilities. To solve this problem, a novel autoloader with novel compliant actuators-SEAs (series elastic actuators) is firstly proposed in this paper. However, compliant actuators will lead to the problem of flexible vibrations. Moreover, the traditional autoloaders still suffer from the problem of poor positioning accuracy caused by the base oscillations. Finding a control strategy that achieves the vibration suppression and the accuracy positioning is nontrivial. In this work, we propose a hybrid singular-perturbed control scheme which consists of a derivative-type control and a piecewise-PD tracking control. Simulation results: (1) demonstrate the effects of the proposed hybrid control scheme, (2) show it’s superiority in positioning accuracy compared with traditional PD control, (3) further show it’s robustness to not only base oscillations but also inertial uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Guo, Y., Hou, B.: Implicit Lyapunov function-based tracking control of a novel ammunition autoloader with base oscillation and payload uncertainty. Nonlinear Dyn. 87(2), 741–753 (2017)

    Google Scholar 

  2. Pan, Y., Li, X., Yu, H.: Efficient pid tracking control of robotic manipulators driven by compliant actuators. IEEE Trans. Control Syst. Technol. 27(2), 915–922 (2019)

    Google Scholar 

  3. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 399–406. IEEE (1995)

  4. Yu, H., Huang, S., Chen, G., Thakor, N.: Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23(8), 1072–1083 (2013)

    Google Scholar 

  5. Plooij, M., Wolfslag, W., Wisse, M.: Clutched elastic actuators. IEEE Trans. Mechatron. 22(2), 739–750 (2017)

    Google Scholar 

  6. Mettin, U., La Hera, P.X., Freidovich, L.B., Shiriaev, A.S.: Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems. Int. J. Robot. Res. 29(9), 1186–1198 (2010)

    Google Scholar 

  7. Sergi, F., Accoto, D., Carpino, G., Tagliamonte, N.L., Guglielmelli, E.: Design and characterization of a compact rotary series elastic actuator for knee assistance during overground walking. In: 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1–6. IEEE (2012)

  8. Kong, K., Bae, J., Tomizuka, M.: A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Trans. Mechatron. 17(2), 288–297 (2012)

    Google Scholar 

  9. Paine, N., Oh, S., Sentis, L.: Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19(3), 1080–1091 (2014)

    Google Scholar 

  10. Oh, S., Kong, K.: High-precision robust force control of a series elastic actuator. IEEE/ASME Trans. Mechatron. 22(1), 71–80 (2017)

    Google Scholar 

  11. Calanca, A., Fiorini, P.: A rationale for acceleration feedback in force control of series elastic actuators. IEEE Trans. Rob. 34(1), 48–61 (2018)

    Google Scholar 

  12. Laffranchi, M., Chen, L., Kashiri, N., Lee, J., Tsagarakis, N.G., Caldwell, D.G.: Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots. Robot. Auton. Syst. 62(12), 1827–1836 (2014)

    Google Scholar 

  13. Sariyildiz, E., Chen, G., Yu, H.: Robust position control of a novel series elastic actuator via disturbance observer. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5423–5428. IEEE (2015)

  14. Sariyildiz, E., Chen, G., Yu, H.: An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE Trans. Ind. Electron. 63(3), 1900–1910 (2016)

    Google Scholar 

  15. Pan, Y., Wang, H., Li, X., Yu, H.: Adaptive command-filtered backstepping control of robot arms with compliant actuators. IEEE Trans. Control Syst. Technol. 26(3), 1149–1156 (2018)

    Google Scholar 

  16. Pan, Y., Li, X., Wang, H., Yu, H.: Continuous sliding mode control of compliant robot arms: a singularly perturbed approach. Mechatronics 52, 127–134 (2018)

    Google Scholar 

  17. Yang, Y., Wei, Y., Lou, J., Fu, L., Zhao, X.: Nonlinear dynamic analysis and optimal trajectory planning of a high-speed macro–micro manipulator. J. Sound Vib. 405(29), 112–132 (2017)

    Google Scholar 

  18. Zong, L., Lu, J., Wang, M., Yuan, J.: Parameters concurrent learning and reactionless control in post-capture of unknown targets by space manipulators. Nonlinear Dyn. 96(1), 443–447 (2019)

    Article  Google Scholar 

  19. Zhang, J., Li, W., Yu, J., Zhang, Q., Cui, S., Li, Y., Li, S., Chen, G.: Development of a virtual platform for telepresence control of an underwater manipulator mounted on a submersible vehicle. IEEE Trans. Ind. Electron. 64(2), 1716–1727 (2017)

    Article  Google Scholar 

  20. Fang, Y., Wang, P., Sun, N., Zhang, Y.: Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. Ind. Electron. 61(1), 414–427 (2014)

    Google Scholar 

  21. Seo, I.S., Han, S.I.: Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator. ISA Trans. 80, 322–335 (2018)

    Google Scholar 

  22. Sato, M., Toda, M.: Robust motion control of an oscillatory-base manipulator in a global coordinate system. IEEE Trans. Ind. Electron. 62(2), 1163–1174 (2015)

    Google Scholar 

  23. Yang, T.W., Xu, W.L., Da Han, J.: Dynamic compensation control of flexible macro/micro manipulator systems. IEEE Trans. Control Syst. Technol. 18(1), 143–151 (2010)

    Google Scholar 

  24. Mannani, A., Talebi, H.A.: A fuzzy Lyapunov-based control strategy for a macro/micro manipulator: experimental results. IEEE Trans. Control Syst. Technol. 15(2), 375–383 (2007)

    Google Scholar 

  25. Lampariello, R., Mishra, H., Oumer, N., Schmidt, P., Stefano, M., Albu-Schaffer, A.: Tracking control for the grasping of a tumbling satellite with a free-floating robot. IEEE Robot. Autom. Lett. 3(4), 3638–3645 (2018)

    Google Scholar 

  26. Simetti, E., Casalino, G.: Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE J. Ocean. Eng. 42(4), 782–799 (2017)

    Google Scholar 

  27. Esfahania, H.N., Azimirada, V., Danesh, M.: A time delay controller included terminal sliding mode and fuzzy gain tuning for underwater vehicle-manipulator systems. Ocean Eng. 107, 97–107 (2015)

    Google Scholar 

  28. Olguin-Diaz, E., Arechavaleta, G., Jarquin, G., Parra-Vega, V.: A passivity-based model-free force/motion control of underwater vehicle manipulator systems. IEEE Trans. Robot. 29(6), 1469–1484 (2013)

    Google Scholar 

  29. Sun, N., Fang, Y., Chen, H., Fu, Y.: Dynamic feedback antiswing control of shipboard cranes without velocity measurement: theory and hardware experiments. IEEE Trans. Ind. Inf. 15(5), 2879–2891 (2019)

    Google Scholar 

  30. Sun, N., Fang, Y., Chen, H., Fu, Y., Lu, B.: Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments. IEEE Trans. Syst. Man Cybern.: Syst. 48(10), 1781–1794 (2018)

    Google Scholar 

  31. Sun, N., Fang, Y., Chen, H., Wu, Y., Lu, B.: Nonlinear antiswing control of offshore cranes with unknown parameters and persistent shipinduced perturbations: theoretical design and hardware experiments. IEEE Trans. Ind. Electron. 65(3), 2629–2641 (2018)

    Google Scholar 

  32. Mei, Y., Ding, S.: Second-order sliding mode controller design subject to an upper-triangular structure. IEEE Trans. Syst. Man Cybern.: Syst. (2018). https://doi.org/10.1109/TSMC.2018.2875267

    Article  Google Scholar 

  33. Mei, Y., Ding, S., Yang, X., Ma, L.: Second-order sliding mode controller design with a larger domain of attraction. J. Syst. Sci. Complex. (2020). https://doi.org/10.1007/s11424-019-8025-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Fang, L., Ding, S., Park, J.H., Ma, L.: Adaptive fuzzy control for stochastic high-order nonlinear systems with output constraints. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3005350

    Article  Google Scholar 

  35. Fang, L., Ding, S., Park, J.H., Ma, L.: Adaptive fuzzy control for nontriangular stochastic high-order nonlinear systems subject to asymmetric output constraints. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3000920

    Article  Google Scholar 

  36. Ananievskii, I.M.: Limited control of a rheonomous mechanical system under uncertainty. J. Appl. Math. Mech. 65(5), 785–796 (2001)

    MathSciNet  Google Scholar 

  37. Chernousko, F.L., Ananievski, I.M., Reshmin, S.A.: Control of Nonlinear Dynamical Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  38. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2005)

    Google Scholar 

  39. Ortega, R., Van Der Schaft, A.J., Mareels, I., Maschke, B.: Robust control of fexible-joint robots using voltage control strategy. IEEE Control Syst. Mag. 21(2), 18–33 (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from the National Natural Science Foundation of China (No. 51605344), the State Scholarship Fund from China Scholarship Council (No. 201908420154) and the grant from China Postdoctoral Science Foundation funded project (No. 2016M592398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Guo.

Ethics declarations

Conflict of interest

There is no conflict of interest for the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xi, B., Mei, R. et al. Singular-perturbed control for a novel SEA-actuated MBT autoloader subject to chassis oscillations. Nonlinear Dyn 101, 2263–2281 (2020). https://doi.org/10.1007/s11071-020-05894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05894-y

Keywords

Navigation