Skip to main content
Log in

Global Existence of Small Data Solutions to Semi-linear Fractional \(\sigma \)-Evolution Equations with Mass and Nonlinear Memory

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the global (in time) existence of small data solutions to semi-linear fractional \(\sigma -\)evolution equations with mass and nonlinear memory. Our main goals was to explain on the one hand the influence of the memory term and on the other hand, the influence of higher regularity of the data on qualitative properties of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, S.: Local and global existence of solutions to semilinear parabolic initial value problems. Nonlinear Anal. 43, 293–323 (2001)

    Article  MathSciNet  Google Scholar 

  2. D’Abbicco, M., Ebert, M.R., Picon, T.: Global existence of small data solutions to the semilinear fractional wave equation. In: Dang, P., Ku, M., Qian, T., Rodino, L.G. (ed.) New Trends in Analysis and Interdisciplinary Applications, Trends in Mathematics, Research Perspectives, Birkhäuser, Basel, pp. 465–472 (2017)

  3. D’Abbicco, M., Lucente, S., Reissig, M.: Semilinear wave equations with effective damping. Chin. Ann. Math. 34B(3), 345–380 (2013)

    Article  Google Scholar 

  4. Kainane Mezadek, A., Reissig, M.: Semi-linear fractional evolution equations with mass or power non-linearity. Nonlinear Differ. Equ. Appl. 25, 42 (2018)

    Article  MathSciNet  Google Scholar 

  5. Palmieri, A., Reissig, M.: Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, II. Mathematische Nachrichten, pp. 1–34. (2017)

  6. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, p. 547. Walter de Gruyter & Co., Berlin (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of this article is supported by the DAAD, Erasmus+ Project between the Hassiba Benbouali University of Chlef (Algeria) and TU Bergakademie Freiberg, 2015-1-DE01-KA107-002026, during the stay of the author at Technical University Bergakademie Freiberg within the period April to July 2017. The author expresses a sincere thankfulness to Prof. Michael Reissig for proposing the interesting topic, for numerous discussions and the staff of the Institute of Applied Analysis for their hospitality. The author thanks the reviewer for his/her comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelatif Kainane Mezadek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Results from Harmonic Analysis

We recall some results from Harmonic Analysis (cf. with [5]).

Proposition 7.1

Let \(r\in (1,\infty ), p>1\) and \(\sigma \in (0,p)\). Let Q(u) denote one of the functions \(|u|^{p}, \pm u|u|^{p-1}\). Then the following inequality holds:

$$\begin{aligned} \Vert Q(u)\Vert _{H^{\sigma }_{r}} \lesssim \Vert u\Vert _{H^{\sigma }_{r}}\Vert u\Vert _{L^{\infty }}^{p-1} \end{aligned}$$

for any \(u\in H^{\sigma }_{r}(\mathbb {R}^n)\cap L^{\infty }(\mathbb {R}^n)\). Here we use for \(\gamma \ge 0\) and \(1< q< \infty \) the fractional Sobolev spaces or Bessel potential spaces

$$\begin{aligned} H^{\gamma }_{q}(\mathbb {R}^n):=\big \{f\in S'(\mathbb {R}^{n}):\Vert f\Vert _{H^{\gamma }_{q}}:=\Vert F^{-1}(\langle \xi \rangle ^{\gamma }F(f))\Vert _{L^{q}}<\infty \big \}. \end{aligned}$$

Moreover, \(\langle D\rangle ^{\gamma }\) stands for the pseudo-differential operator with symbol \(\langle \xi \rangle ^{\gamma } \) and it is defined by \(\langle D\rangle ^{\gamma }u=F^{-1}(\langle \xi \rangle ^{\gamma }F(u))\).

Proof

This result is a special case of the following more general inequality for Triebel-Lizorkin spaces \(F^\sigma _{r,q}\):

$$\begin{aligned} \Vert Q(u)\Vert _{F^\sigma _{r,q} }\lesssim \Vert u\Vert _{ F^\sigma _{r,q} }\Vert u\Vert _{ L^\infty }^{p-1} \quad \text{ for } \text{ any } \,\, u\in F^\sigma _{r,q} \cap L^\infty , \end{aligned}$$

where \(q>0\), whose proof may be found in [6, Theorem 1 in Section 5.4.3]. \(\square \)

Proposition 7.2

Let \(r\in (1,\infty ), p>1\) and \(\sigma \in (0,p)\). Let Q(u) denote one of the functions \(|u|^{p}, \pm u|u|^{p-1}\). Then the following inequality holds:

$$\begin{aligned} \Vert Q(u)\Vert _{\dot{H}^{\sigma }_{r}} \lesssim \Vert u\Vert _{\dot{H}^{\sigma }_{r}}\Vert u\Vert _{L^{\infty }}^{p-1} \end{aligned}$$

for any \(u\in \dot{H}^{\sigma }_{r}(\mathbb {R}^n)\cap L^{\infty }(\mathbb {R}^n)\), where

$$\begin{aligned} \dot{H}^{\gamma }_{q}(\mathbb {R}^{n}):=\{f\in S'(\mathbb {R}^{n}):\Vert f\Vert _{\dot{H}^{\gamma }_{q}}:=\Vert F^{-1}(|\xi |^{\gamma }F(f))\Vert _{L^{q}}<\infty \}. \end{aligned}$$

Here \(|D|^{\gamma }\) stands for the pseudo-differential operator with symbol \(|\xi |^{\gamma } \) and it is defined by \(|D|^{\gamma }u=F^{-1}(|\xi |^{\gamma }F(u))\).

Proof

We will use a homogeneity argument. For any positive \(\lambda \) we define \(u_\lambda (x)=u(\lambda x)\). Applying Proposition 7.1 to \(u_\lambda \) we get

$$\begin{aligned} \Vert Q(u_\lambda )\Vert _{ H^\sigma _r }\lesssim \Vert u_\lambda \Vert _{ H^\sigma _r }\Vert u_\lambda \Vert _{ L^\infty }^{p-1}. \end{aligned}$$
(7.1)

Since for \(r\in (1,\infty )\) we have the decomposition

$$\begin{aligned} \Vert v\Vert _{ H^\sigma _r }\approx \Vert v\Vert _{ \dot{H}^\sigma _r }+\Vert v\Vert _{L^r } \qquad \text{ for } \text{ any } \,\, v\in H^\sigma _r \end{aligned}$$

and the scaling properties

$$\begin{aligned} \Vert u_\lambda \Vert _{ \dot{H}^\sigma _r }=\lambda ^{\sigma -\frac{n}{r}}\Vert u\Vert _{ \dot{H}^\sigma _r }, \,\, \Vert u_\lambda \Vert _{ L^r }=\lambda ^{-\frac{n}{r}}\Vert u\Vert _{ L^r } \,\,\text{ and } \,\, \Vert u_\lambda \Vert _{ L^\infty }=\Vert u\Vert _{ L^\infty } \end{aligned}$$

diving both sides of (7.1) by \(\lambda ^{\sigma -\frac{n}{r}}\) and taking the limit as \(\lambda \rightarrow \infty \) we obtain the desired inequality. \(\square \)

Proposition 7.3

Let \(r\in (1,\infty )\) and \(\sigma >0\). Then the following inequality holds:

$$\begin{aligned} \Vert uv\Vert _{ H^\sigma _r }\lesssim \Vert u\Vert _{ H^\sigma _r }\Vert v\Vert _{ L^\infty }+\Vert u\Vert _{ L^\infty }\Vert v\Vert _{ H^\sigma _r } \end{aligned}$$

for any \(u,v\in H^\sigma _r \cap L^\infty \).

Proof

The result that we want to prove is a special case of the following inequality for Triebel–Lizorkin spaces \(F^\sigma _{r,q}\):

$$\begin{aligned} \Vert uv\Vert _{ F^\sigma _{r,q}}\lesssim \Vert u\Vert _{ F^\sigma _{r,q}}\Vert v\Vert _{ L^\infty }+\Vert u\Vert _{ L^\infty }\Vert v\Vert _{ F^\sigma _{r,q} } \end{aligned}$$

for any \( u,v\in F^\sigma _{r,q} \cap L^\infty \), where \(q>0\), whose proof can be found in [6, Theorem 2 in Section 4.6.4]. \(\square \)

Finally, let us state the corresponding inequality in homogeneous spaces \(\dot{H}^\sigma _r \). For the proof it is possible to follow the same strategy as in the proof of Proposition 7.2.

Proposition 7.4

(Fractional Leibniz formula) Let \(r\in (1,\infty )\) and \(\sigma >0\). Then the following inequality holds:

$$\begin{aligned} \Vert uv\Vert _{\dot{H}^{\sigma }_{r}} \lesssim \Vert u\Vert _{\dot{H}^{\sigma }_{r}}\Vert v\Vert _{L^{\infty }}+\Vert u\Vert _{L^{\infty }}\Vert v\Vert _{\dot{H}^{\sigma }_{r}} \end{aligned}$$

for any \(u,v\in \dot{H}^{\sigma }_{r}(\mathbb {R}^n)\cap L^{\infty }(\mathbb {R}^n).\)

1.2 Inequalities

First we recall Young’s inequality.

Lemma 7.5

Let \(u \in L^{p}(\mathbb {R}^{n})\) and \(v \in L^{r}(\mathbb {R}^{n})\) with \(1\le p,r\le \infty \). Then \(u*v \in L^{q}(\mathbb {R}^{n})\), where \(1+\frac{1}{q}=\frac{1}{p}+\frac{1}{r}\) and

$$\begin{aligned} \Vert u*v\Vert _{L^{q}}\lesssim \Vert u\Vert _{L^{p}}\Vert v\Vert _{L^{r}}. \end{aligned}$$

Finally, we recall the following Lemma from [1]:

Lemma 7.6

Suppose that \(\theta \in [0,1), a\ge 0\) and \(b\ge 0\). Then there exists a constant \(C=C(a,b,\theta )>0\) such that for all \(t>0\) the following estimate holds:

$$\begin{aligned} \begin{array}{ll} \int _{0}^{t}(t-\tau )^{-\theta } (1+t-\tau )^{-a}(1+\tau )^{-b} \,\mathrm{d}\tau \\ \qquad \le \left\{ \begin{array}{ll} C(1+t)^{-\min \{a+\theta ,b\}}\qquad \quad &{}\text {if}\quad \max \{a+\theta ,b\}>1, \\ C(1+t)^{-\min \{a+\theta ,b\}}\ln (2+t) \qquad \quad &{}\text {if}\quad \max \{a+\theta ,b\}=1,\\ C(1+t)^{1-a-\theta -b}\qquad \quad &{}\text {if}\quad \max \{a+\theta ,b\}<1. \end{array} \right. \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kainane Mezadek, A. Global Existence of Small Data Solutions to Semi-linear Fractional \(\sigma \)-Evolution Equations with Mass and Nonlinear Memory. Mediterr. J. Math. 17, 159 (2020). https://doi.org/10.1007/s00009-020-01573-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01573-9

Keywords

Mathematics Subject Classification

Navigation