Skip to main content
Log in

Mechanism of Microstructural Change of High-Density Polyethylene Under Different Outdoor Climates in China

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work aims to understand the microstructural change mechanism of high-density polyethylene (HDPE) exposed at five national standard natural exposure stations (at Qionghai, Ruoqiang, Lhasa, Qingdao, and Hailar) for four years, which represented the five typical climates over China. It was found that the natural weathering of HDPE was the synergistic result of multi-factors such as temperature, irradiation, oxygen, etc. Based on the carbonyl index, the degradation degree in decreasing order was Ruoqiang, Qionghai, Lhasa, Qingdao and Hailar, but the microstructural change mechanism of HDPE was similar. The molecular structure was modified and mass molecular defects formed such as carbonyl and hydrogen groups during the degradation. The new freed molecular chains released from the amorphous region self-nucleated, and then formed new imperfect crystals because of the suppression of molecular defects. With the deposition of molecular defects, the chemi-crystallization ceased. Positron annihilation lifetime spectroscopy indicated the free volume hole shrank continually with exposure time mainly due to the interaction between molecular defects, and a part of amorphous region transformed into crystalline region by chemi-crystallization. In addition, the crystallization and re-melting behavior of degraded HDPE samples had been investigated in order to promote the recycling of waste degraded polymer materials. The results indicated that the crystalline temperature and the second melting temperature decreased with exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Valadez-González A, Veleva L (2004) Mineral filler influence on the photo-oxidation mechanism degradation of high density polyethylene. Part II: natural exposure test. Polym Degrad Stab 83:139–148

    Google Scholar 

  2. Hsu Y-C, Weir MP, Truss RW, Garvey CJ, Nicholson TM, Halley PJ (2012) A fundamental study on photo-oxidative degradation of linear low density polyethylene films at embrittlement. Polymer 53:2385–2393

    CAS  Google Scholar 

  3. Mendes L, Rufino E, De Paula FO, Torres A Jr (2003) Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City. Polym Degrad Stab 79:371–383

    CAS  Google Scholar 

  4. Ojeda T, Freitas A, Birck K, Dalmolin E, Jacques R, Bento F, Camargo F (2011) Degradability of linear polyolefins under natural weathering. Polym Degrad Stab 96:703–707

    CAS  Google Scholar 

  5. Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal Appl Pyrolysis 48:93–109

    CAS  Google Scholar 

  6. Tang Y (2017) Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Acta Polym Sin 1:1–2

    Google Scholar 

  7. Rabello M, White J (1997) Crystallization and melting behaviour of photodegraded polypropylene. Polymer 38:6379–6387

    CAS  Google Scholar 

  8. Philippart JL, Sinturel C, Arnaud R, Gardette JL (1999) Influence of the exposure parameters on the mechanism of photooxidation of polypropylene. Polym Degrad Stab 64:213–225

    CAS  Google Scholar 

  9. Petre AL, Budrugeac P, Segal E (1999) Thermal degradation of polyvinyl chloride. J Therm Anal Calorim 56:1065–1070

    CAS  Google Scholar 

  10. Peterson JD, Vyazovkin S, Wight CA (2015) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784

    Google Scholar 

  11. Gardette M, Perthue A, Gardette J-L, Janecska T, Foeldes E, Pukanszky B, Therias S (2013) Photo- and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content. Polym Degrad Stab 98:2383–2390

    CAS  Google Scholar 

  12. Shimizu K, Tokuta Y, Oishi A, Kuriyama T, Kunioka M (2016) Weatherability of polypropylene by accelerated weathering tests and outdoor exposure tests in Japan. J Polym 2016:1–14

    Google Scholar 

  13. Ni K, Zhu J, Liao X, Lv Y, Wu L, Zhang Q, An Z, Yang Q, Huang Y, Li G (2015) Microstructure studies of isotactic polypropylene under natural weathering by positron annihilation lifetime spectroscopy. J Polym Res 22:109

    Google Scholar 

  14. Tidjani A, Arnaud R (1993) Photo-oxidation of linear low density polyethylene: a comparison of photoproducts formation under natural and accelerated exposure. Polym Degrad Stab 39:285–292

    CAS  Google Scholar 

  15. Colom X, Canavate J, Sunol JJ, Pages P, Saurina J, Carrasco F (2003) Natural and artificial aging of polypropylene-polyethylene copolymers. J Appl Polym Sci 87:1685–1692

    CAS  Google Scholar 

  16. Rajakumar K, Sarasvathy V, Chelvan AT, Chitra R, Vijayakumar CT (2009) Natural weathering studies of polypropylene. J Polym Environ 17:191–202

    CAS  Google Scholar 

  17. Zhou X, Huang S-s, Yu Y, Li J-q, Chen L-h (2014) Outdoor natural weathering of bamboo flour/polypropylene foamed composites. J Reinf Plast Compos 33:1835–1846

    Google Scholar 

  18. Uzomah TC, Unuoha GC (1998) Natural weathering of polypropylene films. II. Ultimate properties and exposure time. J Appl Polym Sci 69:2533–2540

    CAS  Google Scholar 

  19. Santos RM, Botelho GL, Cramez C, Machado AV (2013) Outdoor and accelerated weathering of acrylonitrile-butadiene-styrene: a correlation study. Polym Degrad Stab 98:2111–2115

    CAS  Google Scholar 

  20. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397

    CAS  Google Scholar 

  21. Cruz SA, Zanin M (2003) Evaluation and identification of degradative processes in post-consumer recycled high-density polyethylene. Polym Degrad Stab 80:31–37

    CAS  Google Scholar 

  22. Sheikh N, Akhavan A, Naimian F, Khoylou F, Hassanpour S, Sohrabpour M (2006) Formulation of a photosensitized polyethylene film; Its structure and property variation under the weathering conditions of Tehran. J Polym Environ 14:103–109

    CAS  Google Scholar 

  23. Shi X, Wang J, Stapf S, Mattea C, Li W, Yang Y (2011) Effects of thermo-oxidative aging on chain mobility, phase composition, and mechanical behavior of high-density polyethylene. Polym Eng Sci 51:2171–2177

    CAS  Google Scholar 

  24. Mitroka SM, Smiley TD, Tanko JM, Dietrich AM (2013) Reaction mechanism for oxidation and degradation of high density polyethylene in chlorinated water. Polym Degrad Stab 98:1369–1377

    CAS  Google Scholar 

  25. Fernando SS, Christensen PA, Egerton TA, White JR (2007) Carbon dioxide evolution and carbonyl group development during photodegradation of polyethylene and polypropylene. Polym Degrad Stab 92:2163–2172

    CAS  Google Scholar 

  26. Valadez-Gonzalez A, Cervantes-Uc J, Veleva L (1999) Mineral filler influence on the photo-oxidation of high density polyethylene: I. Accelerated UV chamber exposure test. Polym Degrad Stab 63:253–260

    CAS  Google Scholar 

  27. Craig IH, White JR, Shyichuk AV, Syrotynska I (2005) Photo-induced scission and crosslinking in LDPE, LLDPE, and HDPE. Polym Eng Sci 45:579–587

    CAS  Google Scholar 

  28. Craig IH, White JR (2005) Crystallization and chemi-crystallization of recycled photodegraded polyethylenes. Polym Eng Sci 45:588–595

    CAS  Google Scholar 

  29. Sathyanarayana PM, Shariff G, Thimmegowda MC, Ashalatha MB, Ramani R, Ranganathaiah C (2002) A positron lifetime study of structural relaxation in UV irradiated poly (ethylene terephthalate). Polym Degrad Stab 78:449–458

    CAS  Google Scholar 

  30. Olson BG, Lin J, Nazarenko S, Jamieson AM (2003) Positron annihilation lifetime spectroscopy of poly (ethylene terephthalate): contributions from rigid and mobile amorphous fractions. Macromolecules 36:7618–7623

    CAS  Google Scholar 

  31. Borek J, Osoba W (2001) Free volume changes in physically aged polyethylene by positron annihilation. Polymer 42:2901–2905

    CAS  Google Scholar 

  32. Soccalingame L, Perrin D, Benezet JC, Mani S, Coiffier F, Richaud E, Bergeret A (2015) Reprocessing of artificial UV-weathered wood flour reinforced polypropylene composites. Polym Degrad Stab 120:313–327

    CAS  Google Scholar 

  33. Soccalingame L, Perrin D, Benezet JC, Bergeret A (2016) Reprocessing of UV-weathered wood flour reinforced polypropylene composites: study of a natural outdoor exposure. Polym Degrad Stab 133:389–398

    CAS  Google Scholar 

  34. Xiong J, Liao X, Zhu J, An Z, Yang Q, Huang Y, Li G (2017) Natural weathering mechanism of isotatic polypropylene under different outdoor climates in China. Polym Degrad Stab 146:212–222

    CAS  Google Scholar 

  35. Xiong J, Ni K, Liao X, Zhu J, An Z, Yang Q, Huang Y, Li G (2016) Investigation of chemi-crystallization and free volume changes of high-density polyethylene weathered in a subtropical humid zone. Polym Int 65:1474–1481

    CAS  Google Scholar 

  36. Cheng S, Chen X, Hsuan YG, Li CY (2012) Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites. Macromolecules 45:993–1000

    CAS  Google Scholar 

  37. Dlubek G, Stejny J, Lupke T, Bamford D, Petters K, Hubner C, Alam MA, Hill MJ (2002) Free-volume variation in polyethylenes of different crystallinities: positron lifetime, density, and X-ray studies. J Polym Sci Part B 40:65–81

    CAS  Google Scholar 

  38. Monge MA, Diaz JA, Pareja R (2004) Strain-induced changes of free volume measured by positron lifetime spectroscopy in ultrahigh molecular weight polyethylene. Macromolecules 37:7223–7230

    CAS  Google Scholar 

  39. Jia CF, Zhang QW, Liao X, Zhu JJ, Wu LY, Ni K, Yang Q, An Z, Li GX (2015) Hierarchical microstructure changes and the molecular mechanism of polypropylene under a critical failure strain during creep. Polymer 67:92–100

    CAS  Google Scholar 

  40. Jia CF, Liao X, Zhu JJ, An Z, Zhang QW, Yang Q, Li GX (2016) Creep-resistant behavior of beta-polypropylene with different crystalline morphologies. RSC Adv 6:30986–30997

    CAS  Google Scholar 

  41. Jia C, Liao X, Zhu J, An Z, Yang Q, Li G (2016) Effective enhancement of the creep resistance in isotactic polypropylene by elevated concentrations of DMDBS. RSC Adv 6:84801–84809

    CAS  Google Scholar 

  42. Goldanskii AV, Onishuk VA, Shantarovich VP (1987) Some principles of the studies of positron-annihilation in polymer systems. Phys Status Solidi A 102:559–564

    CAS  Google Scholar 

  43. Zhou W, Wang B, Zheng Y, Zhu Y, Wang J, Qi N (2008) Effect of surface decoration of CNTs on the interfacial interaction and microstructure of Epoxy/MWNT nanocomposites. Chem phys 9:1046–1052

    CAS  Google Scholar 

  44. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510

    CAS  Google Scholar 

  45. Nakanishi H, Jean YC, Smith EG, Sandreczki TC (1989) Positronium formation at free-volume sites in the amorphous regions of semicrystalline PEEK. J Polym Sci Part B 27:1419–1424

    CAS  Google Scholar 

  46. Cangialosi D, Schut H, Van Veen A, Picken S (2003) Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate. Macromolecules 36:142–147

    CAS  Google Scholar 

  47. Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58

    CAS  Google Scholar 

  48. Kirkegaard P, Pedersen NJ, Eldrup M (1989) PC-PATFIT: a program package for fitting positron annihilation spectra on personal computers. Positron Annihil 642–644

  49. Wang YY, Nakanishi H, Jean YC, Sandreczki TC (1990) Positron-annihilation in amine-cured epoxy polymers- pressure-dependence. J Polym Sci Part B 28:1431–1441

    CAS  Google Scholar 

  50. Kobayashi Y, Zheng W, Meyer E, McGervey J, Jamieson A, Simha R (1989) Free volume and physical aging of poly (vinyl acetate) studied by positron annihilation. Macromolecules 22:2302–2306

    CAS  Google Scholar 

  51. Scott G (1990) Mechanisms of polymer degradation and stabilisation. Elsevier Applied Science, Dordrecht

    Google Scholar 

  52. Bertoldo M, Ciardelli F (2004) Water extraction and degradation of a sterically hindered phenolic antioxidant in polypropylene films. Polymer 45:8751–8759

    CAS  Google Scholar 

  53. Maria R, Rode K, Bruell R, Dorbath F, Baudrit B, Bastian M, Brendle E (2011) Monitoring the influence of different weathering conditions on polyethylene pipes by IR-microscopy. Polym Degrad Stab 96:1901–1910

    CAS  Google Scholar 

  54. François-Heude A, Richaud E, Desnoux E, Colin X (2014) Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation. Polym Degrad Stab 100:10–20

    Google Scholar 

  55. Obadal M, Cermak R, Raab M, Verney V, Commereuc S, Fraisse F (2005) Structure evolution of alpha- and beta-polypropylenes upon UV irradiation: a multiscale comparison. Polym Degrad Stab 88:532–539

    CAS  Google Scholar 

  56. Blinov NN, Popov AA, Rakovski SK, Stoyanov AK, Shopov DM, Zaikov GY (1989) Changes in the melting temperature, polydispersity and crystallinity of the components in a blend of high density polyethylene with polypropylene at deep ozone oxidation. Polym Sci USSR 31:2434–2439

    Google Scholar 

  57. Zoepfl FJ, Markovic V, Silverman J (1984) Differential scanning calorimetry studies of irradiated polyethylene. 2. the effect of oxygen. J Polym Sci Pol Chem 22:2033–2045

    CAS  Google Scholar 

  58. Hagihara H, Oishi A, Funabashi M, Kunioka M, Suda H (2014) Free-volume hole size evaluated by positron annihilation lifetime spectroscopy in the amorphous part of poly (ethylene terephthalate) degraded by a weathering test. Polym Degrad Stab 110:389–394

    CAS  Google Scholar 

  59. Zaydouri A, Grivet M (2009) The effect of electron irradiation on high-density polyethylene: positron annihilation lifetime spectroscopy, differential scanning calorimetry and X-ray scattering studies. Radiat Phys Chem 78:770–775

    CAS  Google Scholar 

  60. Cheng J, Fone M, Reddy VN, Schwartz KB, Fisher HP, Wunderlich B (1994) Identification and quantitative analysis of the intermediate phase in a linear high-density polyethylene. J Polym Sci Part B 32:2683–2693

    CAS  Google Scholar 

  61. Zipper M, Simon G, Cherry P, Hill A (1994) The effect of crystallinity on chain mobility and free volume in the amorphous regions of a miscible polycarbonate/polyester blend. J Polym Sci Part B 32:1237–1247

    CAS  Google Scholar 

  62. Zia Q, Mileva D, Androsch R (2008) Rigid amorphous fraction in isotactic polypropylene. Macromolecules 41:8095–8102

    CAS  Google Scholar 

  63. Xiang K, Huang G, Zheng J, Wang X, Huang J (2013) Investigation on the thermal oxidative aging mechanism and lifetime prediction of butyl rubber. Macromol Res 21:10–16

    CAS  Google Scholar 

  64. Rath SK, Sharma SK, Sudarshan K, Chavan JG, Patro TU, Pujari PK (2016) Subnanoscopic inhomogeneities in model end-linked PDMS networks probed by positron annihilation lifetime spectroscopy and their effects on thermomechanical properties. Polymer 101:358–369

    CAS  Google Scholar 

  65. Al-Qaradawi IY, Britton DT, Abdel-Hady EE, Abdulmalik DA, Al-Shobaki MA, Minani E (2003) Positron annihilation studies of the effect of gamma irradiation dose in polymers. Radiat Phys Chem 68:457–461

    CAS  Google Scholar 

  66. Naddeo C, Guadagno L, Vittoria V (2004) Photooxidation of spherilene linear low-density polyethylene films subjected to environmental weathering. 1. Changes in mechanical properties. Polym Degrad Stab 85:1009–1013

    CAS  Google Scholar 

  67. Zhang J, Yang M, Maurer FHJ (2011) Effect of TiO2 formation on the free volume properties of electrospun PMMA nanohybrids. Macromolecules 44:5711–5721

    CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Nos. 51721091 and 51133005), the Programme of Introducing Talents of Discipline to Universities (B13040) and the Research Fund for the Doctoral Program of Higher Education (20120181130013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Liao or Guangxian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Xiong, J., Liao, X. et al. Mechanism of Microstructural Change of High-Density Polyethylene Under Different Outdoor Climates in China. J Polym Environ 28, 2616–2630 (2020). https://doi.org/10.1007/s10924-020-01807-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01807-7

Keywords

Navigation