Skip to main content
Log in

The Influence of Vanillin Acrylate Derivative on the Phase Separation Temperature of Environmental Photo-Cross-Linked N-isopropylacrylamide Copolymer and Hydrogel Thin Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study emphasizes the fabrication of thermal and pH-responsive photo-cross-linked polymers and hydrogel thin films. N-isopropylacrylamide was used as a thermal responsive monomer, while a new pH-responsive monomer was synthesized based on vanillin 2-((dimethylamino)methyl)-4-formyl-6-methoxyphenyl acrylate (DMAMVA). The photo-cross-linker (DMIA) and adhesion promotor (DMITAAc) have been prepared. All compounds were investigated by 1H NMR, 13C NMR, and FTIR. Terpolymers of 10, 15, and 20 mol% DMAMVA and 10 mol% of DMIA with N-isopropylacrylamide were fabricated. The chemical structures were investigated, and the molecular weights were determined by gel permeation chromatography GPC. Moreover, the glass transition temperatures were also recorded by differential scanning calorimeter DSC. The lower critical solution temperatures of polymers were determined by turbidity tests using UV–Vis spectroscopy. The polymer solution of 20 mol% sample was spin-coated over the gold to form hydrogel thin film within photo-cross-linking by the UV lamp. The film thickness was determined by the SPR-OW technique using Kretschmann configuration. The swelling was recorded and the transition temperature of hydrogel was determined as the change in volume degree of swelling and refractive index with the change in temperature. The dual responsive functional photo-cross-linked polymers and hydrogel thin films have significant importance in the grafting of some biological molecules.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Seidi F, Jenjob R, Crespy D (2018) Designing smart polymer conjugates for controlled release of payloads. Chem Rev 11:3965–4036. https://doi.org/10.1021/acs.chemrev.8b00006

    Article  CAS  Google Scholar 

  2. Liang H, Qiang Z, Xue L, Michael JS (2019) Stimuli-responsive polymers for sensing and actuation. Mater Horiz 6:1774–1793. https://doi.org/10.1039/C9MH00490D

    Article  Google Scholar 

  3. Xiaoming H, Chen Z, Yufu T, Feng L, Yuanyuan L, Feng P, Xiaomei L, Yu J, Jie L, Wenjun W, Quli F, Wei H (2019) Intelligent polymer–MnO2 nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. Chem Commun 55:6006–6009. https://doi.org/10.1039/C9CC02148E

    Article  Google Scholar 

  4. Abdelaty MSA (2018) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4 formyl-6-methoxyphenylacrylate) environmental functional copolymers: synthesis, characterizations, and grafting with amino acids. Biomolecules 8:138. https://doi.org/10.3390/biom8040138

    Article  PubMed Central  CAS  Google Scholar 

  5. Abdelaty MSA (2018) Preparation and characterization of new environmental functional polymers based on vanillin and N-isopropylacrylamide for post polymerization. J Polym Environ 26:636–646. https://doi.org/10.1007/s10924-017-0960-2

    Article  CAS  Google Scholar 

  6. Chen J-K, Chang C-J (2014) Fabrication and applications of stimuli-responsive polymer films and patterns on surface. Materials 7:805–875. https://doi.org/10.3390/ma7020805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Richard H (2014) Temperature-responsive polymers: properties, synthesis, and applications. Smart Polym Appl. https://doi.org/10.1016/B978-0-08-102416-4.00002-8

    Article  Google Scholar 

  8. Kocak G, Tuncer C, Bütün V (2017) pH-responsive polymers. Polym Chem 8:144–176. https://doi.org/10.1039/C6PY01872F

    Article  CAS  Google Scholar 

  9. Tao X, Ting L, Wei-Feng Z, Cheng-Sheng Z (2019) Ionic-strength responsive Zwitterionic copolymer hydrogels with tunable swelling and adsorption behaviors. Langmuir 35(5):1146–1155

    Article  CAS  Google Scholar 

  10. Shohei I, Miki M, Hironobu K, Yoshitsugu H, Shokyoku K (2019) Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors. Polym Chem 10:6122–6130. https://doi.org/10.1039/C9PY01417A

    Article  Google Scholar 

  11. Valentina M, Pierfrancesco C, Marta G, Bartosz T, Veronica A (2017) Light-responsive polymer micro- and nano-capsules. Polymers 9:1–19. https://doi.org/10.3390/polym9010008

    Article  CAS  Google Scholar 

  12. Abdelaty MSA, Kuckling D (2016) Synthesis and characterization of new functional photo cross-linkable smart polymers containing vanillin derivatives. Gels 2:76. https://doi.org/10.3390/gels2010003

    Article  CAS  Google Scholar 

  13. Jayakumar A, Jose KV, Lee J-M (2020) Hydrogels for medical and environmental applications. Small Methods. https://doi.org/10.1002/smtd.201900735

    Article  Google Scholar 

  14. Junsoo K, Solyee I, Jeong HK, Sang MK, Seung-Min L, Jaewoo L, Jong P, Jiyong W, Seung EM (2020) Thermoresponsive hydrogels: artificial perspiration membrane by programmed deformation of thermoresponsive hydrogels. Adv Mater. https://doi.org/10.1002/adma.202070039

    Article  Google Scholar 

  15. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications—a review. Eur J Pharm Biopharm 68:34–45. https://doi.org/10.1016/j.ejpb.2007.02.025

    Article  PubMed  CAS  Google Scholar 

  16. Ajji Z, Maarouf M, Khattab A, Ghazal H (2020) Synthesis of pH-responsive hydrogel based on PVP grafted with crotonic acid for controlled drug delivery. Radiat Phys Chem 170:108612. https://doi.org/10.1016/j.radphyschem.2019.108612

    Article  CAS  Google Scholar 

  17. Angus RH, Pradeep K, Yahya EC, Pierre PDK, Thashree M, Lisa CT, Viness P (2017) Design of a versatile pH-responsive hydrogel for potential oral delivery of gastric-sensitive bioactives. Polymers 9:474. https://doi.org/10.3390/polym910047

    Article  Google Scholar 

  18. Liang X, Linzi Q, Yang S, Yixin S, Linhong D, Xinqing L, Mark B, Rong Z (2018) Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B 6:510–517. https://doi.org/10.1039/C7TB01851G

    Article  Google Scholar 

  19. Jamali A, Moghbeli MR, Ameli F, Roayaie E, Karambeigi MS (2020) Synthesis and characterization of pH-sensitive poly(acrylamide-co-methylenebisacrylamide-co-acrylic acid) hydrogel microspheres containing silica nanoparticles: application in enhanced oil recovery processes. J Appl Polym Sci 137:48491. https://doi.org/10.1002/app.48491

    Article  CAS  Google Scholar 

  20. Ankita B, Judy MA-B, Anthony G-E (2020) Toward impedimetric measurement of acidosis with a pH-responsive hydrogel sensor. ACS Sensors. https://doi.org/10.1021/acssensors.9b02336

    Article  Google Scholar 

  21. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62. https://doi.org/10.1007/3-540-56791-7-1

    Article  CAS  Google Scholar 

  22. Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, Hammond PT (2011) Tannic acid mediated suppression of PNIPAAm microgels thermoresponsive behaviour. Macromolecules 44:612–621. https://doi.org/10.1021/ma1025016

    Article  CAS  Google Scholar 

  23. Andrew C, Kyoung DS, Hyungjun Y, Seon JH, Dong SK (2019) Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering. Biomater Sci 7:2277–2287. https://doi.org/10.1039/C8BM01664J

    Article  Google Scholar 

  24. Abdul Haq M, Su Y, Wang D (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C 70:842–855. https://doi.org/10.1016/j.msec.2016.09.081

    Article  CAS  Google Scholar 

  25. Abdelaty MSA (2019) Influence of vanillin acrylate and 4 acetylphenyl acrylate hydrophobic functional monomers on phase separation of N isopropylacrylamide environmental terpolymer: fabrication and characterization. Polym Bull. https://doi.org/10.1007/s00289-019-02890-0

    Article  Google Scholar 

  26. Maria VM, Maria M, Cesar AB (2018) Poly(N-isopropylacrylamide) Crosslinked gels as intrinsic amphiphilic materials. swelling properties used to build novel interphases. J Phys Chem B 122:9038–9048

    Article  CAS  Google Scholar 

  27. Akhilesh KG, Nicholas AP, Ali K (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453. https://doi.org/10.1002/bit.25160

    Article  CAS  Google Scholar 

  28. Javad T, Youhong T (2017) Hydrogel based sensors for biomedical applications: an updated review. Polymers 9:364. https://doi.org/10.3390/polym9080364

    Article  CAS  Google Scholar 

  29. Yang HW, Chena JK, Cheng CC, Kuo SW (2013) Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition. Appl Surf Sci 271:60–69. https://doi.org/10.1016/j.apsusc.2013.01.074

    Article  CAS  Google Scholar 

  30. Jabbari E, Tavakoli J, Sarvestani AS (2007) Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field. Smart Mater Struct 16:1614

    Article  CAS  Google Scholar 

  31. Kocak G, Tuncera C, Bütün V (2017) pH-Responsive polymers. Polym Chem 8:144–176. https://doi.org/10.1039/C6PY01872F

    Article  CAS  Google Scholar 

  32. Thomas S, Linda S, Mark G, Stephen R (2016) The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 12:2542. https://doi.org/10.1039/c5sm02693h

    Article  CAS  Google Scholar 

  33. Abdelaty MSA (2018) Preparation and characterization of environmental functional poly(styrene-Co-2-[(diethylamino)methyl]-4-formyl-6-methoxy-phenyl acrylate) copolymers for amino acid post polymerization. Open J Polym Chem 8:41–55. https://doi.org/10.4236/ojpchem.2018.83005

    Article  CAS  Google Scholar 

  34. Liu M, Ishid Y, Ebina Y, Sasaki T, Hikima T, Takata M, Aida T (2015) An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517:68–72. https://doi.org/10.1038/nature14060

    Article  PubMed  CAS  Google Scholar 

  35. Umit G, Oguz O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47(19):6889–6899. https://doi.org/10.1021/ma5015116

    Article  CAS  Google Scholar 

  36. Sean B, Dyer N, Anthony G-E (2003) Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl Methacrylate. Biomacromol 4(5):1224–1231

    Article  CAS  Google Scholar 

  37. Tavakoli J, Tang Y (2017) Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in vitro biomedical studies. Mater Sci Eng 77:318–325

    Article  CAS  Google Scholar 

  38. Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan CW, Tang Y et al (2017) A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13:1000. https://doi.org/10.1002/smll.201601916

    Article  CAS  Google Scholar 

  39. Ertürk G, Mattiasson B (2017) Molecular imprinting techniques used for the preparation of biosensors. Sensors 17:288

    Article  CAS  Google Scholar 

  40. Abdelaty, M.S.A., and Kuckling D. (2018) Poly (N-Isopropyl Acrylamide-Co-Vanillin Acrylate) Dual Responsive Functional Copolymers for Grafting Biomolecules by Schiff’s Base Click Reaction. Open Journal of Organic Polymer Materials. 8,15-32. 10.4236/ojopm.2018.82002

  41. Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Anal Chim Acta 681:8–15

    Article  CAS  Google Scholar 

  42. Castillo J, Gaspar S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Someanu SA, Ryabov AD, Csoregi E (2004) Biosensors for life quality: design, development and applications. Sensors Actuators B 102:179–194

    Article  CAS  Google Scholar 

  43. Han Z, Wang P, Mao G, Yin T, Zhong D, Yiming B, Hu X, Jia Z, Nian G, Qu S, Yang W (2020) A dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b21713

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen D, Liu H, Kobayashib T, Yu H (2010) Multiresponsive reversible gels based on a carboxylic azo polymer. J Mater Chem 20:3610–3614. https://doi.org/10.1039/B925163D

    Article  CAS  Google Scholar 

  45. Pasparakisa G, Vamvakaki M (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234–1248

    Article  CAS  Google Scholar 

  46. Yajie L, Chaocan Z, Youliang Z, Yixiao D, Wanyu C (2015) Novel multi-responsive polymer materials: when ionic liquids step in. Euro Polym J 69:441–448. https://doi.org/10.1016/j.eurpolymj.2015.05.023

    Article  CAS  Google Scholar 

  47. Sebastian H, Torsten R, Hendrik B, Sebastian S (2014) Multiresponsive polymer hydrogels by orthogonal supramolecular chain cross-linking. Macromolecules 47(12):4028–4036. https://doi.org/10.1021/ma5008573

    Article  CAS  Google Scholar 

  48. Hossein H, Soleyman H, Shahryar P, Naser G, Rohollah M (2019) Synthesis of multiresponsive β-cyclodextrin nanocomposite through surface RAFT polymerization for controlled drug delivery. Polym Adv Technol 30:2860–2871. https://doi.org/10.1002/pat.4718

    Article  CAS  Google Scholar 

  49. Ramkissoon-Ganorkar C, Baudys M, Wan Kim S (2000) Effect of ionic strength on the loading efficiency” of the model polypeptide/protein drugs in pH-/temperature-sensitive polymers. J Biomater Sci Polym Ed 11:45–54

    Article  CAS  Google Scholar 

  50. Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J Appl Polym Sci 11:28–1139. https://doi.org/10.1002/app.10137

    Article  Google Scholar 

  51. Li X, Sun Q, Li Q, Kawazoe N, Chen G (2018) Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem 6:499. https://doi.org/10.3389/fchem.2018.00499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Debroy D, Li-Oakey KD, Oakey J (2019) Engineering functional hydrogel microparticle interfaces by controlled oxygen-inhibited photopolymerization. Colloids Surf B Biointerfaces 180:371–375. https://doi.org/10.1016/j.colsurfb.2019.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Huang R, Kostanski LK, Filipe CDM, Ghosh R (2009) Environment-responsive hydrogel-based ultrafiltration membranes for protein bioseparation. J Membr Sci 336:42–49. https://doi.org/10.1016/j.memsci.2009.03.002

    Article  CAS  Google Scholar 

  54. Zhen L, Zhijun X, Liuyin F, Hua X, Chengxi C (2017) An ionic coordination hybrid hydrogel for bioseparation. Chem Commun 53:5842–5845. https://doi.org/10.1039/C7CC01923H

    Article  Google Scholar 

  55. Rakchoy S, Suppakul P, Jinkarn T (2009) Antimicrobial effectsof vanillin coated solution for coating paper board intended for packaging bakery products. Asian J Food Agroindustry 2:138–147

    Google Scholar 

  56. Imanishi H, Sasaki YF, Matsumoto K (1990) Suppression of 6-TG-resistant mutations in V79 cells and recessive spot formations in mice by vanillin. Mutat Res Lett 243:151–158

    Article  CAS  Google Scholar 

  57. Ho K, Yazan LS, Ismail N, Ismail M (2009) Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol 20:155–160

    Article  CAS  Google Scholar 

  58. Acik G (2020) Bio-based Poly(ɛ-caprolactone) from soybean-oil derived polyol via ring-opening polymerization. J Polym Environ 28:668–675. https://doi.org/10.1007/s10924-019-01597-7

    Article  CAS  Google Scholar 

  59. Acik G, Karatavuk AO (2020) Synthesis, properties and biodegradability of cross-linked amphiphilic poly(vinyl acrylate)-poly(tert-butyl acrylate)s by photo-initiated radical polymerization. Eur Polym J 127: Article 109618. https://doi.org/10.1016/j.eurpolymj.2020.109602

  60. Samuel SH, Kristy SM, Quan C (2018) Surface plasmon resonance: material and interface design for universal accessibility. Anal Chem 90(1):19–39. https://doi.org/10.1021/acs.analchem.7b04251

    Article  CAS  Google Scholar 

  61. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29:203002. https://doi.org/10.1088/1361-648X/aa60f3

    Article  PubMed  Google Scholar 

  62. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin (part 2): temperature responsive layer A, functional, temperature and pH layer B. Polym Bull 11:4837–4858. https://doi.org/10.1007/s00289-018-2297-y

    Article  CAS  Google Scholar 

  63. Abdelaty MSA (2019) Layer by layer photo-cross-linked environmental functional hydrogel thin films based on vanillin: part 3. J Polym Environ. https://doi.org/10.1007/s10924-019-01421-2

    Article  Google Scholar 

  64. Nan Zhang N, Knoll W (2009) Thermally responsive hydrogel films studied by surface plasmon diffraction. Anal Chem 81:2611–2617. https://doi.org/10.1021/ac802527j

    Article  PubMed  CAS  Google Scholar 

  65. Anac I, Aulasevich A, Junk MJN, Jakubowicz P, Roskamp RF, Menges B, Jonas U, Knoll W (2010) Optical characterization of co-nonsolvency effects in thin responsive PNIPAAm-based gel layers exposed to ethanol/water mixtures. Macromol Chem Phys 211:1018–1025. https://doi.org/10.1002/macp.200900533

    Article  CAS  Google Scholar 

  66. Kuckling D, Hoffmann J, PlÖtner M, Ferse D, Kretschmer K, Adler H-JP, Arndt K-F, Reichelt R (2003) Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: micro-fabricated temperature responsive hydrogels. Polymer 44:4455–4462. https://doi.org/10.1016/S0032-3861(03)00413-0

    Article  CAS  Google Scholar 

  67. Harmon ME, Kuckling D, Pareek P, Frank CW (2003) Photo-cross-linkable PNIPAAm copolymers. 4. Effects of copolymerization and cross-linking on the volume-phase transition in constrained hydrogel layers. Langmuir 19:10947–10956. https://doi.org/10.1021/la030217h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is gratefully acknowledged to Egyptian culture and missions, and The Deutscher Akademischer Austauch (DAAD) for financial assistance during the post-doctor work in Germany of Momen S.A. Abdelaty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A. The Influence of Vanillin Acrylate Derivative on the Phase Separation Temperature of Environmental Photo-Cross-Linked N-isopropylacrylamide Copolymer and Hydrogel Thin Films. J Polym Environ 28, 2599–2615 (2020). https://doi.org/10.1007/s10924-020-01793-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01793-w

Keywords

Navigation