Skip to main content

Advertisement

Log in

Characterization of Alkaline and Silane Treated Fibers of ‘Water Hyacinth Plants’ and Reinforcement of ‘Water Hyacinth Fibers’ with Bioepoxy to Develop Fully Biobased Sustainable Ecofriendly Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Currently, bio-thermoplastic polymers are widely used as matrix reinforced with different kinds of natural fibers, because these bio-polymer are biodegradable, eco-friendly and nontoxic. Moreover, the natural fibers are one of the sustainable material for making composites for lightweight materials, which can deplete the use of man-made synthetic materials and reduce greenhouse effect. In this view, the use of waste bio-fiber as a reinforcement material in biobased composites for ecofriendly semi-structural applications. This research studied the extraction and characterization of waste fibers from water hyacinth plants and also fabrication of bioepoxy based ecofriendly composites from chemically treated water hyacinth fibers (WHFs). As far as we know, no work on this concept has been published so far. Water hyacinth is as an invasive and free-floating perennial aquatic plant known as Eichhornia crassipes. Firstly, raw and chemically treated water hyacinth fibers were characterized by various techniques such as chemical analysis, XRD, FTIR, TGA, DTG, SEM and AFM. The raw, NaOH and silane treated WHFs reinforced bioepoxy based composites are manufactured by casting method. Then, tensile, flexural, impact, hardness, thermal, dynamic, and surface morphology tests were carried out on composite specimens. This study confirmed that the WHFs can be used as a reinforcement material with bioepoxy polymer to develop fully biobased ecofriendly composites for production of lightweight structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barari B, Omrani E, Moghadam AD, Menezes PL, Pillai KM, Rohatgi PK (2016) Carbohydr Polym 147:282–293

    PubMed  CAS  Google Scholar 

  2. George A, Sanjay MR, Sriusk R, Parameswaranpillai J, Siengchin S (2020) Int J Biol Macromol 154:329–338

    PubMed  CAS  Google Scholar 

  3. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) J Clean Prod 172:566–581

    CAS  Google Scholar 

  4. Vinod A, Siengchin S, Parameswaranpillai J (2020) J Clean Prod 258:120978

    CAS  Google Scholar 

  5. Sarasini F, Fiore V (2018) J Clean Prod 195:240–267

    CAS  Google Scholar 

  6. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Saravanakumar SS, Yogesha B (2019) J Nat Fiber 16(8):1132–1144

    Google Scholar 

  7. Mitan NMM (2019) Mater Today: Proc 19:1408–1412

    Google Scholar 

  8. Patel S (2012) Rev Environ Sci BioTechnol 11(3):249–259

    Google Scholar 

  9. Sindhu R, Binod P, Pandey A, Madhavan A, Alphonsa JA, Vivek N, Faraco V (2017) Bioresour Technol 230:152–162

    PubMed  Google Scholar 

  10. Abral H, Kadriadi D, Rodianus A, Mastariyanto P, Arief S, Sapuan SM, Ishak MR (2014) Mater Des 58:125–129

    CAS  Google Scholar 

  11. Chonsakorn S, Srivorradatpaisan S, Mongkholrattanasit R (2019) J Nat Fiber 16(7):1015–1025

    CAS  Google Scholar 

  12. Ramirez NF, Hernandez YS, De Leon JC, Garcia SV, Lvova LD, Gonzalez LG (2015) Fib Polym 16(1):196–200

    Google Scholar 

  13. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) Carbohydr Polym 207:108–121

    Google Scholar 

  14. Sharma M, Rao IM, Bijwe J (2009) Wear 267(5–8):839–845

    CAS  Google Scholar 

  15. Dittenber DB, GangaRao HV (2012) Compos A 43(8):1419–1429

    Google Scholar 

  16. Vu CM, Nguyen DD, Pham TD, Pham LT, Choi HJ (2017) Polym Test 61:150–161

    CAS  Google Scholar 

  17. Yashas Gowda TG, Sanjay MR, Siengchin S (2019) Front Mater 6:226

    Google Scholar 

  18. Auvergne R, Caillol S, David G, Boutevin B, Pascault JP (2014) Chem Rev 114(2):1082–1115

    PubMed  CAS  Google Scholar 

  19. Cicala G, Pergolizzi E, Piscopo F, Carbone D, Recca G (2018) Compos B 132:69–76

    CAS  Google Scholar 

  20. Yorseng K, Rangappa SM, Pulikkalparambil H, Siengchin S, Parameswaranpillai J (2020) Constr Build Mater 235:117464

    CAS  Google Scholar 

  21. Yan L, Chouw N, Huang L, Kasal B (2016) Constr Build Mater 112:168–182

    CAS  Google Scholar 

  22. Fiore V, Di Bella G, Valenza A (2015) Compos B 68:14–21

    CAS  Google Scholar 

  23. Vijay R, Manoharan S, Vinod A, Singaravelu DL, Sanjay MR, Siengchin S (2019) Mater Res Exp 6(9):095307

    CAS  Google Scholar 

  24. Seki Y (2009) Mater Sci Eng: A 508(1–2):247–252

    Google Scholar 

  25. Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Compos A 37(9):1368–1376

    Google Scholar 

  26. Yousif BF, Shalwan A, Chin CW, Ming KC (2012) Mater Des 40:378–385

    CAS  Google Scholar 

  27. Agu CV, Njoku OU, Chilaka FC, Agbiogwu D, Iloabuchi KV, Ukazu B (2014) Afr J Biotechnol. https://doi.org/10.5897/AJB2013.13443

    Article  Google Scholar 

  28. Beakou A, Ntenga R, Lepetit J, Ateba JA, Ayina LO (2008) Compos A 39(1):67–74

    Google Scholar 

  29. Conrad CM (1944) Ind Eng Chem Anal Ed 16(12):745–748

    CAS  Google Scholar 

  30. Goering HK, Van Soest PJ (1970) Forage fiber analyses: apparatus, reagents, procedures, and some applications. Agricultural Research Service, US Department of Agriculture.

  31. Pulp A, Paper Industry Technical Association (1978) Appita Standard P11s.

  32. Tappi T (1993) TAPPI Test Methods T 211:67–74

    Google Scholar 

  33. Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Ind Crop Prod 19(3):245–254

    CAS  Google Scholar 

  34. Hyness NRJ, Vignesh NJ, Senthamaraikannan P, Saravanakumar SS, Sanjay MR (2018) J Nat Fiber 15(1):146–153

    CAS  Google Scholar 

  35. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Siengchin S, Jawaid M, Kathiresan M (2018) J Nat Fiber. https://doi.org/10.1080/15440478.2019.1669514

  36. Premalatha N, Saravanakumar SS, Sanjay MR, Siengchin S, Khan A (2019) J Nat Fiber. https://doi.org/10.1080/15440478.2019.1678546

    Article  Google Scholar 

  37. Saravanakumaar A, Senthilkumar A, Saravanakumar SS, Sanjay MR, Khan A (2018) Int J Polym Anal Charact 23(6):529–536

    CAS  Google Scholar 

  38. Senthamaraikannan P, Saravanakumar SS, Sanjay MR, Jawaid M, Siengchin S (2019) Mater Lett 240:221–224

    CAS  Google Scholar 

  39. Kabir MM, Wang H, Lau KT, Cardona F (2013) Appl Surf Sci 276:13–23

    CAS  Google Scholar 

  40. Narayanasamy P, Balasundar P, Senthil S, Sanjay MR, Siengchin S, Khan A, Asiri AM (2020) Int J Biol Macromol 150:793–801

    PubMed  CAS  Google Scholar 

  41. Rajeshkumar G, Hariharan V, Scalici T (2016) J Nat Fiber 13(6):702–713

    CAS  Google Scholar 

  42. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M (2018) Carbohydr Polym 181:650–658

    PubMed  CAS  Google Scholar 

  43. Reddy KO, Shukla M, Maheswari CU, Rajulu AV (2012) J For Res 23(4):667–674

    Google Scholar 

  44. Sgriccia N, Hawley MC, Misra M (2008) Compos A 39(10):1632–1637

    Google Scholar 

  45. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Jawaid M, Parameswaranpillai J (2019) Int J Biol Macromol 125:99–108

    PubMed  CAS  Google Scholar 

  46. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) Compos A 36(8):1110–1118

    Google Scholar 

  47. Kumar R, Hynes NRJ, Senthamaraikannan P, Saravanakumar S, Sanjay MR (2018) J Nat Fiber 15(6):822–829

    CAS  Google Scholar 

  48. Gurukarthik Babu B, Prince Winston D, SenthamaraiKannan P, Saravanakumar SS, Sanjay MR (2019) J Nat Fiber 16(7):1035–1042

    CAS  Google Scholar 

  49. Maheshwaran MV, Hyness NRJ, Senthamaraikannan P, Saravanakumar SS, Sanjay MR (2018) J Nat Fiber 15(6):789–798

    CAS  Google Scholar 

  50. Karthik T, Murugan R (2013) Fib Polym 14(3):465–472

    CAS  Google Scholar 

  51. Manimaran P, Sanjay MR, Senthamaraikannan P, Yogesha B, Barile C, Siengchin S (2020) J Nat Fiber 17(3):359–370

    CAS  Google Scholar 

  52. Punyamurthy R, Sampathkumar D, Srinivasa CV, Bennehalli B (2012) BioResources 7(3):3515–3524

    CAS  Google Scholar 

  53. Manimaran P, Saravanan SP, Sanjay MR, Siengchin S, Jawaid M, Khan A (2019) J Mater Res Technol 8(2):1952–1963

    CAS  Google Scholar 

  54. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A (2004) Int J Adhes Adhes 24(1):43–54

    CAS  Google Scholar 

  55. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Compos B 30(3):321–331

    Google Scholar 

  56. John MJ, Bellmann C, Anandjiwala RD (2010) Carbohydr Polym 82(3):549–554

    CAS  Google Scholar 

  57. Sawpan MA, Pickering KL, Fernyhough A (2011) Compos A 42(8):888–895

    Google Scholar 

  58. Madhu P, Sanjay MR, Jawaid M, Siengchin S, Khan A, Pruncu CI (2020) Polym Test 85:106437

    CAS  Google Scholar 

  59. Pandey KK (1999) J Appl Polym Sci 71(12):1969–1975

    CAS  Google Scholar 

  60. Alshammari BA, Alotaibi MD, Alothman OY, Sanjay MR, Kian LK, Almutairi Z, Jawaid M (2019) J Polym Environ 27(11):2334–2340

    CAS  Google Scholar 

  61. Khan A, Vijay R, Singaravelu DL, Sanjay MR, Siengchin S, Verpoort F, Asiri AM (2019) J Nat Fiber. https://doi.org/10.1080/15440478.2019.1697993

    Article  Google Scholar 

  62. Khan A, Vijay R, Singaravelu DL, Sanjay MR, Siengchin S, Verpoort F, Asiri AM (2020) J Nat Fiber. https://doi.org/10.1080/15440478.2019.1709110

    Article  Google Scholar 

  63. Prithiviraj M, Muralikannan R, Senthamaraikannan P, Saravanakumar SS (2016) Int J Polym Anal Charact 21(8):669–674

    CAS  Google Scholar 

  64. Vinod A, Vijay R, Singaravelu DL, Sanjay MR, Siengchin S, Yagnaraj Y, Khan S (2019) J Nat Fiber. https://doi.org/10.1080/15440478.2019.1669514

    Article  Google Scholar 

  65. Ghali L, Msahli S, Zidi M, Sakli F (2009) Mater Lett 63(1):61–63

    CAS  Google Scholar 

  66. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Sain M (2017) Int J Biol Macromol 102:822–828

    PubMed  CAS  Google Scholar 

Download references

Funding

This funding was supported by King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Sanjay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumrith, N., Techawinyutham, L., Sanjay, M.R. et al. Characterization of Alkaline and Silane Treated Fibers of ‘Water Hyacinth Plants’ and Reinforcement of ‘Water Hyacinth Fibers’ with Bioepoxy to Develop Fully Biobased Sustainable Ecofriendly Composites. J Polym Environ 28, 2749–2760 (2020). https://doi.org/10.1007/s10924-020-01810-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01810-y

Keywords

Navigation