Skip to main content
Log in

Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR-Bench dataset

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Recent breakthroughs in G protein-coupled receptor (GPCR) crystallography and the subsequent increase in number of solved GPCR structures has allowed for the unprecedented opportunity to utilize their experimental structures for structure-based drug discovery applications. As virtual screening represents one of the primary computational methods used for the discovery of novel leads, the GPCR-Bench dataset was created to facilitate comparison among various virtual screening protocols. In this study, we have benchmarked the performance of Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) in improving virtual screening enrichment in comparison to docking with Glide, using the entire GPCR-Bench dataset of 24 GPCR targets and 254,646 actives and decoys. Reranking the top 10% of the docked dataset using MM/PBSA resulted in improvements for six targets at EF1% and nine targets at EF5%, with the gains in enrichment being more pronounced at the EF1% level. We additionally assessed the utility of rescoring the top ten poses from docking and the ability of short MD simulations to refine the binding poses prior to MM/PBSA calculations. There was no clear trend of the benefit observed in both cases, suggesting that utilizing a single energy minimized structure for MM/PBSA calculations may be the most computationally efficient approach in virtual screening. Overall, the performance of MM/PBSA rescoring in improving virtual screening enrichment obtained from docking of the GPCR-Bench dataset was found to be relatively modest and target-specific, highlighting the need for validation of MM/PBSA-based protocols prior to prospective use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5HT1B:

5-Hydroxytryptamine 1B receptor

5HT2B:

5-Hydroxytryptamine 2B receptor

AA2AR:

Adenosine A2A receptor

ACM2:

Muscarinic acetylcholine 2 receptor

ACM3:

Muscarinic acetylcholine 3 receptor

ADRB1:

Beta-1 adrenergic receptor

ADRB2:

Beta-2 adrenergic receptor

BEAR:

Binding Estimation After Refinement

CCR5:

C-C chemokine receptor type 5

CRFR1:

Corticotropin releasing factor receptor 1

CXCR4:

C-X-C chemokine receptor type 4

DRD3:

Dopamine 3 receptor

GPCR:

G protein-coupled receptor

GPR40:

Free fatty acid receptor 1

EF:

Enrichment factor

HRH1:

Histamine 1 receptor

MD:

Molecular dynamics

MGLUR1:

Metabotropic glutamate receptor 1

MGLUR5:

Metabotropic glutamate receptor 5

MM/GBSA:

Molecular Mechanics/Generalized Born Surface Area

MM/PBSA:

Molecular Mechanics/Poisson-Boltzmann Surface Area

OPRD:

Delta opioid receptor

OPRK:

Kappa opioid receptor

OPRM:

Mu opioid receptor

OPRX:

Nociceptin receptor

OX2R:

Orexin receptor type 2

PAR1:

Proteinase-activated receptor 1

P2Y12:

P2Y purinoceptor 12

S1PR1:

Sphingosine 1-phosphate receptor 1

SMO:

Smoothened receptor

TM:

Transmembrane

References

  1. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  PubMed  CAS  Google Scholar 

  2. Kolakowski LF (1994) GCRDb: a G-protein-coupled receptor database. Receptors Channels 2:1–7

    PubMed  CAS  Google Scholar 

  3. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357. https://doi.org/10.1038/nrd2518

    Article  PubMed  CAS  Google Scholar 

  4. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923.Structure-Function

    Article  PubMed  CAS  Google Scholar 

  5. Sriram K, Insel PA (2018) GPCRs as targets for approved drugs: How many targets and how many drugs? Mol Pharmacol. https://doi.org/10.1124/mol.117.111062

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81. https://doi.org/10.1038/nrm3933

    Article  PubMed  CAS  Google Scholar 

  7. Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: Adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446. https://doi.org/10.1093/nar/gkx1109

    Article  PubMed  CAS  Google Scholar 

  8. Michino M, Abola E, Brooks CL et al (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463. https://doi.org/10.1038/nrd2877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Beuming T, Sherman W (2012) Current assessment of docking into GPCR crystal structures and homology models: Successes, challenges, and guidelines. J Chem Inf Model 52:3263–3277. https://doi.org/10.1021/ci300411b

    Article  PubMed  CAS  Google Scholar 

  10. Loo JSE, Emtage AL, Ng KW et al (2018) Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment. J Mol Graph Model 80:38–47. https://doi.org/10.1016/j.jmgm.2017.12.017

    Article  PubMed  CAS  Google Scholar 

  11. Cheng T, Li X, Li Y et al (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49:1079–1093. https://doi.org/10.1021/ci9000053

    Article  PubMed  CAS  Google Scholar 

  12. Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755. https://doi.org/10.1002/jcc

    Article  PubMed  CAS  Google Scholar 

  13. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975. https://doi.org/10.1039/C6CP01555G

    Article  PubMed  CAS  Google Scholar 

  14. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. https://doi.org/10.1021/ar000033

    Article  PubMed  CAS  Google Scholar 

  15. Adcock SA, McCammon JA (2006) Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615. https://doi.org/10.1021/cr040426m

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim JT, Hamilton AD, Bailey CM et al (2006) FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Am Chem Soc 128:15372–15373. https://doi.org/10.1021/ja076881s

    Article  PubMed  CAS  Google Scholar 

  17. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566. https://doi.org/10.1073/pnas.202427399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Singh N, Warshel A (2010) Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins 78:1705–1723. https://doi.org/10.1002/prot.22687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sun H, Li Y, Shen M et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16:22035–22045. https://doi.org/10.1039/c4cp03179b

    Article  PubMed  CAS  Google Scholar 

  20. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a.Assessing

    Article  PubMed  CAS  Google Scholar 

  21. Steinbrecher T, Case DA, Labahn A (2006) A multistep approach to structure-based drug design: studying ligand binding at the human neutrophil elastase. J Med Chem 49:1837–1844. https://doi.org/10.1021/jm0505720

    Article  PubMed  CAS  Google Scholar 

  22. Thompson DC, Humblet C, Joseph-McCarthy D (2008) Investigation of MM-PBSA rescoring of docking poses. J Chem Inf Model 48:1081–1091. https://doi.org/10.1021/ci700470c

    Article  PubMed  CAS  Google Scholar 

  23. Anighoro A, Rastelli G (2013) Enrichment factor analyses on G-protein coupled receptors with known crystal structure. J Chem Inf Model 53:739–743. https://doi.org/10.1021/ci4000745

    Article  PubMed  CAS  Google Scholar 

  24. Degliesposti G, Portioli C, Parenti MD, Rastelli G (2011) BEAR, a novel virtual screening methodology for drug discovery. J Biomol Screen 16:129–133. https://doi.org/10.1177/1087057110388276

    Article  PubMed  CAS  Google Scholar 

  25. Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorgq Med Chem 15:7865–7877. https://doi.org/10.1016/j.bmc.2007.08.019

    Article  CAS  Google Scholar 

  26. Rastelli G, Degliesposti G, Del Rio A, Sgobba M (2009) Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening. Chem Biol Drug Des 73:283–286. https://doi.org/10.1111/j.1747-0285.2009.00780.x

    Article  PubMed  CAS  Google Scholar 

  27. Rastelli G, Del RA, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31:797–810. https://doi.org/10.1002/jcc.21372

    Article  PubMed  CAS  Google Scholar 

  28. Virtanen SI, Niinivehmas SP, Pentikäinen OT (2015) Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening. J Mol Graph Model 62:303–318. https://doi.org/10.1016/j.jmgm.2015.10.012

    Article  PubMed  CAS  Google Scholar 

  29. Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54:4283–4311. https://doi.org/10.1021/jm200371q

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shoichet BK, Kobilka BK (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 33:268–272. https://doi.org/10.1016/j.tips.2012.03.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Weiss DR, Bortolato A, Tehan B, Mason JS (2016) GPCR-Bench: a benchmarking set and practitioners’ guide for G protein-coupled receptor docking. J Chem Inf Model 56:642–651. https://doi.org/10.1021/acs.jcim.5b00660

    Article  PubMed  CAS  Google Scholar 

  32. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dassault Systèmes BIOVIA (2015) Pipeline Pilot. Dassault Systèmes, San Diego

    Google Scholar 

  34. Milletti F, Storchi L, Sforna G, Cruciani G (2007) New and original pKa prediction method using grid molecular interaction fields. J Chem Inf Model 47:2172–2181. https://doi.org/10.1021/ci700018y

    Article  PubMed  CAS  Google Scholar 

  35. Milletti F, Storchi L, Sfoma G et al (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49:68–75. https://doi.org/10.1021/ci800340j

    Article  PubMed  CAS  Google Scholar 

  36. Molecular Networks GmbH (2011) 3D Structure Generator CORINA Classic. Molecular Networks GmbH, Nürnberg

    Google Scholar 

  37. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking acuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  PubMed  CAS  Google Scholar 

  38. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759. https://doi.org/10.1021/jm030644s

    Article  PubMed  CAS  Google Scholar 

  39. Glide (2019) Schrödinger, LLC, New York

  40. Abraham MJ, Hess B, van der Spoel D, Lindahl E (2018) GROMACS User Manual version 2018

  41. Duan Y, Wu C, Chowdhury S et al (2003) A point-charge force field for molecular mechanics simulations of proteins. J Comput Chem 24:1999

    Article  CAS  Google Scholar 

  42. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  PubMed  CAS  Google Scholar 

  43. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641. https://doi.org/10.1002/jcc.10128

    Article  PubMed  CAS  Google Scholar 

  44. Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wennberg CL, Murtola T, Hess B, Lindahl E (2013) Lennard-Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties. J Chem Theory Comput 9:3527–3537. https://doi.org/10.1021/ct400140n

    Article  PubMed  CAS  Google Scholar 

  46. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  47. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  48. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122. https://doi.org/10.1021/ct700200b

    Article  PubMed  CAS  Google Scholar 

  49. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  50. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076. https://doi.org/10.1080/00268978300102851

    Article  Google Scholar 

  51. Evans DJ, Holian BL (1985) The Nose–Hoover thermostat. J Chem Phys 83:4069–4074. https://doi.org/10.1063/1.449071

    Article  CAS  Google Scholar 

  52. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  PubMed  CAS  Google Scholar 

  53. Sgobba M, Caporuscio F, Anighoro A et al (2012) Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur J Med Chem 58:431–440. https://doi.org/10.1016/j.ejmech.2012.10.024

    Article  PubMed  CAS  Google Scholar 

  54. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods: II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877. https://doi.org/10.1002/jcc.21666

    Article  PubMed  CAS  Google Scholar 

  55. Sun H, Li Y, Shen M et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance by using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16:22035–22045. https://doi.org/10.1039/C4CP03179B

    Article  PubMed  CAS  Google Scholar 

  56. El Khoury L, Santos-Martins D, Sasmal S et al (2019) Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-019-00240-w

    Article  PubMed  Google Scholar 

  57. Oehme DP, Brownlee RTC, Wilson DJD (2012) Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV Protease. J Comput Chem 33:2566–2580. https://doi.org/10.1002/jcc.23095

    Article  PubMed  CAS  Google Scholar 

  58. Sun H, Li Y, Tian S et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719. https://doi.org/10.1039/C4CP01388C

    Article  PubMed  CAS  Google Scholar 

  59. Wang C, Nguyen PH, Pham K et al (2016) Calculating protein–ligand binding affinities with MMPBSA: method and error analysis. J Comput Chem 37:2436–2446. https://doi.org/10.1002/jcc.24467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yang T, Wu JC, Yan C et al (2011) Virtual screening using molecular simulations. Proteins 79:1940–1951. https://doi.org/10.1002/prot.23018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ramírez D, Caballero J (2018) Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules 23:1–17. https://doi.org/10.3390/molecules23051038

    Article  CAS  Google Scholar 

  62. Su M, Du Y, Yang Q et al (2018) Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.8b00545

    Article  PubMed  Google Scholar 

  63. Yau MQ, Emtage AL, Chan NJY et al (2019) Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. J Comput Aided Mol Des 33:487–496. https://doi.org/10.1007/s10822-019-00201-3

    Article  PubMed  CAS  Google Scholar 

  64. Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040–4048. https://doi.org/10.1021/jm049081q

    Article  PubMed  CAS  Google Scholar 

  65. Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM (2013) MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J Chem Inf Model 53:201–209. https://doi.org/10.1021/ci300425v

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was supported by Taylor’s University through its Taylor’s University Flagship Research Grant Scheme under grant number TUFR/2017/002/10 and Taylor’s PhD Scholarship Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors gave approval to the final version of the manuscript.

Corresponding author

Correspondence to Jason S. E. Loo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yau, M.Q., Emtage, A.L. & Loo, J.S.E. Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR-Bench dataset. J Comput Aided Mol Des 34, 1133–1145 (2020). https://doi.org/10.1007/s10822-020-00339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00339-5

Keywords

Navigation